skip to main content

Title: Knowledge Graph based Learning Guidance for Cybersecurity Hands-on Labs
Hands-on practice is a critical component of cybersecurity education. Most of the existing hands-on exercises or labs materials are usually managed in a problem-centric fashion, while it lacks a coherent way to manage existing labs and provide productive lab exercising plans for cybersecurity learners. With the advantages of big data and natural language processing (NLP) technologies, constructing a large knowledge graph and mining concepts from unstructured text becomes possible, which motivated us to construct a machine learning based lab exercising plan for cybersecurity education. In the research presented by this paper, we have constructed a knowledge graph in the cybersecurity domain using NLP technologies including machine learning based word embedding and hyperlink-based concept mining. We then utilized the knowledge graph during the regular learning process based on the following approaches: 1. We constructed a web-based front-end to visualize the knowledge graph, which allows students to browse and search cybersecurity-related concepts and the corresponding interdependence relations; 2. We created a personalized knowledge graph for each student based on their learning progress and status; 3.We built a personalized lab recommendation system by suggesting more relevant labs based on students’ past learning history to maximize their learning outcomes. To measure the effectiveness of the proposed solution, we have conducted a use case study and collected survey data from a graduate-level cybersecurity class. Our study shows that, by leveraging the knowledge graph for the cybersecurity area study, students tend to benefit more and show more interests in cybersecurity area.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Global Computing Education Conference (CompEd)
Page Range / eLocation ID:
194 to 200
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This Innovate Practice full paper presents a cloud-based personalized learning lab platform. Personalized learning is gaining popularity in online computer science education due to its characteristics of pacing the learning progress and adapting the instructional approach to each individual learner from a diverse background. Among various instructional methods in computer science education, hands-on labs have unique requirements of understanding learner's behavior and assessing learner's performance for personalization. However, it is rarely addressed in existing research. In this paper, we propose a personalized learning platform called ThoTh Lab specifically designed for computer science hands-on labs in a cloud environment. ThoTh Lab can identify the learning style from student activities and adapt learning material accordingly. With the awareness of student learning styles, instructors are able to use techniques more suitable for the specific student, and hence, improve the speed and quality of the learning process. With that in mind, ThoTh Lab also provides student performance prediction, which allows the instructors to change the learning progress and take other measurements to help the students timely. For example, instructors may provide more detailed instructions to help slow starters, while assigning more challenging labs to those quick learners in the same class. To evaluate ThoTh Lab, we conducted an experiment and collected data from an upper-division cybersecurity class for undergraduate students at Arizona State University in the US. The results show that ThoTh Lab can identify learning style with reasonable accuracy. By leveraging the personalized lab platform for a senior level cybersecurity course, our lab-use study also shows that the presented solution improves students engagement with better understanding of lab assignments, spending more effort on hands-on projects, and thus greatly enhancing learning outcomes. 
    more » « less
  2. Lecture-based teaching paired with laboratory-based exercises is most commonly used in cybersecurity instruction. However, it focuses more on theories and models but fails to provide learners with practical problem-solving skills and opportunities to explore real-world cybersecurity challenges. Problem-based Learning (PBL) has been identified as an efficient pedagogy for many disciplines, especially engineering education. It provides learners with real-world complex problem scenarios, which encourages learners to collaborate with classmates, ask questions and develop a deeper understanding of the concepts while solving real-world cybersecurity problems. This paper describes the application of the PBL methodology to enhance professional training-based cybersecurity education. The authors developed an online laboratory environment to apply PBL with Knowledge-Graph (KG) based guidance for hands-on labs in cybersecurity training.Learners are provided access to a virtual lab environment with knowledge graph guidance to simulated real-life cybersecurity scenarios. Thus, they are forced to think independently and apply their knowledge to create cyber-attacks and defend approaches to solve problems provided to them in each lab. Our experimental study shows that learners tend to gain more enhanced learning outcomes by leveraging PBL with knowledge graph guidance, become more aware of cybersecurity and relevant concepts, and also express interest in keep learning of cybersecurity using our system. 
    more » « less
  3. Computer labs are commonly used in computing education to help students reinforce the knowledge obtained in classrooms and to gain hands-on experience on specific learning subjects. While traditional computer labs are based on physical computer centers on campus, more and more virtual computer lab systems (see, e.g., [1, 2, 3, 4]) have been developed that allow students to carry out labs on virtualized resources remotely through the internet. Virtual computer labs make it possible for students to use their own computers at home, instead of relying on computer centers on campus to work on lab assignments. However, they also make it difficult for students to collaborate, due to the fact that students work remotely and there is a lack of support of sharing and collaboration. This is in contrast to traditional computer labs where students naturally feel the presence of their peers in a physical lab room and can easily work together and help each other if needed. Funded by NSF’s Division of Undergraduate Education, this project develops a collaborative virtual computer lab (CVCL) environment to support collaborative learning in virtual computer labs. The CVCL environment leverages existing open source collaboration tools and desktop sharing technologies and adds new functions unique to virtual computer labs to make it easy for students to collaborate while working on computer labs remotely. It also implements several collaborative lab models to support different forms of collaboration in both formal and informal settings. We have developed the main functions of the CVCL environment and begun to use it in classes in the Computer Science (CS) department at Georgia State University. While the original project focuses on computer labs in its traditional sense, the issue of lack of collaboration applies to much broader learning settings where students work on tasks or assignments on computers, with or without being associated with a lab environment. Due to the high mobility of students in modern campuses and the fact that many learning activities are carried out over the Internet, computer-based learning increasingly happen in students’ personal spaces (e.g., homes, apartments), as opposed to public learning spaces (e.g., laboratories, libraries). In these personal spaces, it is difficult for students to get help from classmates or teaching assistants (TAs) when encountering problems. As a result, collaborative learning is difficult and rare. This is especially true for urban universities such as Georgia State University where a significant portion of students are part-time students and/or commute. To address this issue, we intend to broaden the concept of “virtual computer lab” to include general computer based learning happening in “virtual space,” which is any location where people can meet using networked digital devices [5]. Virtual space is recognized as an increasingly important part of “learning spaces” and asks for support from both the technology aspect and learning theory aspect [5]. Collaborative learning environments that support remote collaboration in virtual computer labs would fill an important need in this broader trend. 
    more » « less
  4. Machine Learning (ML) analyzes, and processes data and discover patterns. In cybersecurity, it effectively analyzes big data from existing cybersecurity attacks and develop proactive strategies to detect current and future cybersecurity attacks. Both ML and cybersecurity are important subjects in computing curriculum, but using ML for cybersecurity is not commonly explored. This paper designs and presents a case study-based portable labware experience built on Google's CoLaboratory (CoLab) for a ML cybersecurity application to provide students with hands-on labs accessing from anywhere and anytime, reducing or eliminating tedious installations and configurations. This approach allows students to focus on learning essential concepts and gaining valuable experience through hands-on problem solving skills. Our preliminary results and student evaluations are reported for a case-based hands-on regression labware in cyber fraud prediction using credit card fraud as an example. 
    more » « less
  5. Abstract

    Nowadays, real‐world learning modules become vital components in computer science and engineering in general and cybersecurity in particular. However, as student enrollments have been dramatically increasing, it becomes more challenging for a university/college to keep up with the quality of education that offers hands‐on experiment training for students thoroughly. These challenges include the difficulty of providing sufficient computing resources and keep them upgraded for the increasing number of students. In order for higher education institutions to conquer such challenges, some educators introduce an alternative solution. Namely, they develop and deploy virtual lab experiments on the clouds such as Amazon AWS and the Global Environment for Network Innovations (GENI), where students can remotely access virtual resources for lab experiments. Besides, Software‐Defined Networks (SDN) are an emerging networking technology to enhance the security and performance of networked communications with simple management. In this article, we present our efforts to develop learning modules via an efficient deployment of SDN on GENI for computer networking and security education. Specifically, we first give our design methodology of the proposed learning modules, and then detail the implementations of the learning modules by starting from user account creation on the GENI testbed to advanced experimental GENI‐enabled SDN labs. It is worth pointing out that in order to accommodate students with different backgrounds and knowledge levels, we consider the varying difficulty levels of learning modules in our design. Finally, student assessment over these pedagogical efforts is discussed to demonstrate the efficiency of the proposed learning modules.

    more » « less