skip to main content


Title: The subgiant HR 7322 as an asteroseismic benchmark star
Abstract We present an in-depth analysis of the bright subgiant HR 7322 (KIC 10005473) using Kepler short-cadence photometry, optical interferometry from CHARA, high-resolution spectra from SONG, and stellar modelling using garstec grids, and the Bayesian grid-fitting algorithm basta. HR 7322 is only the second subgiant with high-quality Kepler asteroseismology for which we also have interferometric data. We find a limb-darkened angular diameter of 0.443 ± 0.007 mas, which, combined with a distance derived using the parallax from Gaia DR2 and a bolometric flux, yields a linear radius of 2.00 ± 0.03 R⊙ and an effective temperature of 6350 ± 90 K. HR 7322 exhibits solar-like oscillations, and using the asteroseismic scaling relations and revisions thereof, we find good agreement between asteroseismic and interferometric stellar radius. The level of precision reached by the careful modelling is to a great extent due to the presence of an avoided crossing in the dipole oscillation mode pattern of HR 7322. We find that the standard models predict a stellar radius systematically smaller than the observed interferometric one and that a sub-solar mixing length parameter is needed to achieve a good fit to individual oscillation frequencies, interferometric temperature, and spectroscopic metallicity.  more » « less
Award ID(s):
1715788 1636624
NSF-PAR ID:
10193759
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
489
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
928 to 940
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During the survey phase of the Kepler mission, several thousand stars were observed in short cadence, allowing for the detection of solar-like oscillations in more than 500 main-sequence and subgiant stars. These detections showed the power of asteroseismology in determining fundamental stellar parameters. However, the Kepler Science Office discovered an issue in the calibration that affected half of the store of short-cadence data, leading to a new data release (DR25) with corrections on the light curves. In this work, we re-analyzed the one-month time series of the Kepler survey phase to search for solar-like oscillations that might have been missed when using the previous data release. We studied the seismic parameters of 99 stars, among which there are 46 targets with new reported solar-like oscillations, increasing, by around 8%, the known sample of solar-like stars with an asteroseismic analysis of the short-cadence data from this mission. The majority of these stars have mid- to high-resolution spectroscopy publicly available with the LAMOST and APOGEE surveys, respectively, as well as precise Gaia parallaxes. We computed the masses and radii using seismic scaling relations and we find that this new sample features massive stars (above 1.2  M ⊙ and up to 2  M ⊙ ) and subgiants. We determined the granulation parameters and amplitude of the modes, which agree with the scaling relations derived for dwarfs and subgiants. The stars studied here are slightly fainter than the previously known sample of main-sequence and subgiants with asteroseismic detections. We also studied the surface rotation and magnetic activity levels of those stars. Our sample of 99 stars has similar levels of activity compared to the previously known sample and is in the same range as the Sun between the minimum and maximum of its activity cycle. We find that for seven stars, a possible blend could be the reason for the non-detection with the early data release. Finally, we compared the radii obtained from the scaling relations with the Gaia ones and we find that the Gaia radii are overestimated by 4.4%, on average, compared to the seismic radii, with a scatter of 12.3% and a decreasing trend according to the evolutionary stage. In addition, for homogeneity purposes, we re-analyzed the DR25 of the main-sequence and subgiant stars with solar-like oscillations that were previously detected and, as a result, we provide the global seismic parameters for a total of 525 stars. 
    more » « less
  2. Abstract Asteroseismology of bright stars has become increasingly important as a method to determine the fundamental properties (in particular ages) of stars. The Kepler Space Telescope initiated a revolution by detecting oscillations in more than 500 main-sequence and subgiant stars. However, most Kepler stars are faint and therefore have limited constraints from independent methods such as long-baseline interferometry. Here we present the discovery of solar-like oscillations in α Men A, a naked-eye ( V = 5.1) G7 dwarf in TESS’s southern continuous viewing zone. Using a combination of astrometry, spectroscopy, and asteroseismology, we precisely characterize the solar analog α Men A ( T eff = 5569 ± 62 K, R ⋆ = 0.960 ± 0.016 R ⊙ , M ⋆ = 0.964 ± 0.045 M ⊙ ). To characterize the fully convective M dwarf companion, we derive empirical relations to estimate mass, radius, and temperature given the absolute Gaia magnitude and metallicity, yielding M ⋆ = 0.169 ± 0.006 M ⊙ , R ⋆ = 0.19 ± 0.01 R ⊙ , and T eff = 3054 ± 44 K. Our asteroseismic age of 6.2 ± 1.4 (stat) ± 0.6 (sys) Gyr for the primary places α Men B within a small population of M dwarfs with precisely measured ages. We combined multiple ground-based spectroscopy surveys to reveal an activity cycle of P = 13.1 ± 1.1 yr for α Men A, a period similar to that observed in the Sun. We used different gyrochronology models with the asteroseismic age to estimate a rotation period of ∼30 days for the primary. Alpha Men A is now the closest ( d = 10 pc) solar analog with a precise asteroseismic age from space-based photometry, making it a prime target for next-generation direct-imaging missions searching for true Earth analogs. 
    more » « less
  3. Abstract

    Understanding magnetic activity on the surface of stars other than the Sun is important for exoplanet analyses to properly characterize an exoplanet’s atmosphere and to further characterize stellar activity on a wide range of stars. Modeling stellar surface features of a variety of spectral types and rotation rates is key to understanding the magnetic activity of these stars. Using data from Kepler, we use the starspot modeling program STarSPot (STSP) to measure the position and size of spots for KOI-340, which is an eclipsing binary consisting of a subgiant star (Teff= 5593 ± 27 K,R= 1.98 ± 0.05R) with an M-dwarf companion (M= 0.214 ± 0.006M).STSPuses a novel technique to measure the spot positions and radii by using the transiting secondary to study and model individual active regions on the stellar surface using high-precision photometry. We find that the average size of spot features on KOI-340's primary is ∼10% the radius of the star, i.e., two times larger than the mean size of solar-maximum sunspots. The spots on KOI-340 are present at every longitude and show possible signs of differential rotation. The minimum fractional spotted area of KOI-340's primary is22+12%, while the spotted area of the Sun is at most 0.2%. One transit of KOI-340 shows a signal in the transit consistent with a plage; this plage occurs right before a dark spot, indicating that the plage and spot might be colocated on the surface of the star.

     
    more » « less
  4. ABSTRACT

    Although stellar radii from asteroseismic scaling relations agree at the per cent level with independent estimates for main sequence and most first-ascent red giant branch (RGB) stars, the scaling relations over-predict radii at the tens of per cent level for the most luminous stars ($R \gtrsim 30 \, \mathrm{R}_{\odot }$). These evolved stars have significantly superadiabatic envelopes, and the extent of these regions increase with increasing radius. However, adiabaticity is assumed in the theoretical derivation of the scaling relations as well as in corrections to the large frequency separation. Here, we show that a part of the scaling relation radius inflation may arise from this assumption of adiabaticity. With a new reduction of Kepler asteroseismic data, we find that scaling relation radii and Gaia radii agree to within at least 2 per cent for stars with $R \lesssim 30\, \mathrm{R}_{\odot }$, when treated under the adiabatic assumption. The accuracy of scaling relation radii for stars with $50\, \mathrm{R}_{\odot }\lesssim R \lesssim 100\, \mathrm{R}_{\odot }$, however, is not better than $10~{{\ \rm per \, cent}}-15~{{\ \rm per \, cent}}$ using adiabatic large frequency separation corrections. We find that up to one third of this disagreement for stars with $R \approx 100\, \mathrm{R}_{\odot }$ could be caused by the adiabatic assumption, and that this adiabatic error increases with radius to reach 10 per cent at the tip of the RGB. We demonstrate that, unlike the solar case, the superadiabatic gradient remains large very deep in luminous stars. A large fraction of the acoustic cavity is also in the optically thin atmosphere. The observed discrepancies may therefore reflect the simplified treatment of convection and atmospheres.

     
    more » « less
  5. Most previous efforts to calibrate how rotation and magnetic activity depend on stellar age and mass have relied on observations of clusters, where isochrones from stellar evolution models are used to determine the properties of the ensemble. Asteroseismology employs similar models to measure the properties of an individual star by matching its normal modes of oscillation, yielding the stellar age and mass with high precision. We use 27 days of photometry from the {\it Transiting Exoplanet Survey Satellite} (TESS) to characterize solar-like oscillations in the G8 subgiant of the 94~Aqr triple system. The resulting stellar properties, when combined with a reanalysis of 35 years of activity measurements from the Mount Wilson HK project, allow us to probe the evolution of rotation and magnetic activity in the system. The asteroseismic age of the subgiant agrees with a stellar isochrone fit, but the rotation period is much shorter than expected from standard models of angular momentum evolution. We conclude that weakened magnetic braking may be needed to reproduce the stellar properties, and that evolved subgiants in the hydrogen shell-burning phase can reinvigorate large-scale dynamo action and briefly sustain magnetic activity cycles before ascending the red giant branch. 
    more » « less