skip to main content

Title: Continuous wave Fe 2+ :ZnSe mid-IR optical fiber lasers

Today fiber lasers in the visible to near-infrared region of the spectrum are well known, however mid-infrared fiber lasers have only recently approached the same commercial availability and power output. There has been a push to fabricate optical fiber lasers out of crystalline materials which have superior mid-IR performance and the ability to directly generate mid-IR light. However, these materials cannot currently be fabricated into an optical fiber via traditional means. We have used high pressure chemical vapor deposition (HPCVD) to deposit Fe2+:ZnSe into a silica optical fiber template. These deposited structures have been found to exhibit laser threshold behavior and emit CW mid-IR laser light with a central wavelength of 4.12 µm. This is the first reported solid state fiber laser with direct laser emission generated beyond 4 µm and represents a new frontier of possibility in mid-IR laser development.

Authors:
; ; ; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10194299
Journal Name:
Optics Express
Volume:
28
Issue:
20
Page Range or eLocation-ID:
Article No. 30263
ISSN:
1094-4087; OPEXFF
Publisher:
Optical Society of America
Sponsoring Org:
National Science Foundation
More Like this
  1. Modulation-based control and locking of lasers, filters and other photonic components is a ubiquitous function across many applications that span the visible to infrared (IR), including atomic, molecular and optical (AMO), quantum sciences, fiber communications, metrology, and microwave photonics. Today, modulators used to realize these control functions consist of high-power bulk-optic components for tuning, sideband modulation, and phase and frequency shifting, while providing low optical insertion loss and operation from DC to 10s of MHz. In order to reduce the size, weight and cost of these applications and improve their scalability and reliability, modulation control functions need to be implemented in a low loss, wafer-scale CMOS-compatible photonic integration platform. The silicon nitride integration platform has been successful at realizing extremely low waveguide losses across the visible to infrared and components including high performance lasers, filters, resonators, stabilization cavities, and optical frequency combs. Yet, progress towards implementing low loss, low power modulators in the silicon nitride platform, while maintaining wafer-scale process compatibility has been limited. Here we report a significant advance in integration of a piezo-electric (PZT, lead zirconate titanate) actuated micro-ring modulation in a fully-planar, wafer-scale silicon nitride platform, that maintains low optical loss (0.03 dB/cm in a 625 µmmore »resonator) at 1550 nm, with an order of magnitude increase in bandwidth (DC - 15 MHz 3-dB and DC - 25 MHz 6-dB) and order of magnitude lower power consumption of 20 nW improvement over prior PZT modulators. The modulator provides a >14 dB extinction ratio (ER) and 7.1 million quality-factor (Q) over the entire 4 GHz tuning range, a tuning efficiency of 162 MHz/V, and delivers the linearity required for control applications with 65.1 dB·Hz2/3and 73.8 dB·Hz2/3third-order intermodulation distortion (IMD3) spurious free dynamic range (SFDR) at 1 MHz and 10 MHz respectively. We demonstrate two control applications, laser stabilization in a Pound-Drever Hall (PDH) lock loop, reducing laser frequency noise by 40 dB, and as a laser carrier tracking filter. This PZT modulator design can be extended to the visible in the ultra-low loss silicon nitride platform with minor waveguide design changes. This integration of PZT modulation in the ultra-low loss silicon nitride waveguide platform enables modulator control functions in a wide range of visible to IR applications such as atomic and molecular transition locking for cooling, trapping and probing, controllable optical frequency combs, low-power external cavity tunable lasers, quantum computers, sensors and communications, atomic clocks, and tunable ultra-low linewidth lasers and ultra-low phase noise microwave synthesizers.

    « less
  2. Abstract

    Mid-infrared (MIR) spectrometers are invaluable tools for molecular fingerprinting and hyper-spectral imaging. Among the available spectroscopic approaches, GHz MIR dual-comb absorption spectrometers have the potential to simultaneously combine the high-speed, high spectral resolution, and broad optical bandwidth needed to accurately study complex, transient events in chemistry, combustion, and microscopy. However, such a spectrometer has not yet been demonstrated due to the lack of GHz MIR frequency combs with broad and full spectral coverage. Here, we introduce the first broadband MIR frequency comb laser platform at 1 GHz repetition rate that achieves spectral coverage from 3 to 13 µm. This frequency comb is based on a commercially available 1.56 µm mode-locked laser, robust all-fiber Er amplifiers and intra-pulse difference frequency generation (IP-DFG) of few-cycle pulses inχ(2)nonlinear crystals. When used in a dual comb spectroscopy (DCS) configuration, this source will simultaneously enable measurements with μs time resolution, 1 GHz (0.03 cm−1) spectral point spacing and a full bandwidth of >5 THz (>166 cm−1) anywhere within the MIR atmospheric windows. This represents a unique spectroscopic resource for characterizing fast and non-repetitive events that are currently inaccessible with other sources.

  3. Mid-infrared photonic integrated circuits (PICs) that combine on-chip light sources with other optical components constitute a key enabler for applications such as chemical sensing, light detection, ranging, and free-space communications. In this paper, we report the monolithic integration of interband cascade lasers emitting at 3.24 µm with passive, high-index-contrast waveguides made of chalcogenide glasses. Output from the chalcogenide waveguides exhibits pulsed peak power up to 150 mW (without roll-over), threshold current density 280 A/cm2, and slope efficiency 100 mW/A at 300 K, with a lower bound of 38% efficiency for coupling between the two waveguides. These results represent an important step toward the realization of fully integrated mid-infrared PICs.

  4. The advent of chirped-pulse amplification in the 1980s and femtosecond Ti:sapphire lasers in the 1990s enabled transformative advances in intense laser–matter interaction physics. Whereas most of experiments have been conducted in the limited near-infrared range of 0.8–1 μm, theories predict that many physical phenomena such as high harmonic generation in gases favor long laser wavelengths in terms of extending the high-energy cutoff. Significant progress has been made in developing few-cycle, carrier-envelope phase-stabilized, high-peak-power lasers in the 1.6–2 μm range that has laid the foundation for attosecond X ray sources in the water window. Even longer wavelength lasers are becoming available that are suitable to study light filamentation, high harmonic generation, and laser–plasma interaction in the relativistic regime. Long-wavelength lasers are suitable for sub-bandgap strong-field excitation of a wide range of solid materials, including semiconductors. In the strong-field limit, bulk crystals also produce high-order harmonics. In this review, we first introduce several important wavelength scaling laws in strong-field physics, then describe recent breakthroughs in short- (1.4–3 μm), mid- (3–8 μm), and long-wave (8–15 μm) infrared laser technology, and finally provide examples of strong-field applications of these novel lasers. Some of the broadband ultrafast infrared lasers will have profound effects on medicine, environmental protection, and national defense,more »because their wavelengths cover the water absorption band, the molecular fingerprint region, as well as the atmospheric infrared transparent window.

    « less
  5. We report results of the crystal growth and characterization of undoped and Dy-doped TlPb2Br5 for applications in infrared (IR) lasers and nuclear radiation detection. TlPb2Br5 (TPB) was synthesized from commercial starting materials of PbBr2 and TlBr and further purified through a combination of zone-refinement and directional solidification. For doping experiments, 2 wt% of DyBr3 was added to the purified TPB material. Crystal growth of TPB and Dy: TPB was carried out in a two-zone tube furnace by a vertical Bridgman method. Following optical excitation at ~1.36um, the Dy: TPB crystal exhibited efficient mid-IR emission bands centered at 2.87um and 4.35um with room-temperature lifetimes of 9.5 ms and 5.2 ms, respectively. The peak emission cross-sections were determined to be ~0.8x10-20 cm2 and ~0.5x10-20 cm2, respectively, which makes Dy: TPB a promising candidate for mid-IR laser applications. Besides its potential as a solid-state laser host, an undoped TPB crystal was also tested for gamma-ray detection. Using Cs-137 and Am-241 sources resulted in energy resolutions for gamma-rays as good as 1-2% (FWHM) at room-temperature under non-optimized conditions.