skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Behavioral training of marmosets and electrophysiological recording from the cerebellum
The common marmoset (Callithrix jacchus) is a promising new model for study of neurophysiological basis of behavior in primates. Like other primates, it relies on saccadic eye movements to monitor and explore its environment. Previous reports have demonstrated some success in training marmosets to produce goal-directed actions in the laboratory. However, the number of trials per session has been relatively small, thus limiting the utility of marmosets as a model for behavioral and neurophysiological studies. In this article, we report the results of a series of new behavioral training and neurophysiological protocols aimed at increasing the number of trials per session while recording from the cerebellum. To improve the training efficacy, we designed a precisely calibrated food regulation regime that motivates the subjects to perform saccade tasks, resulting in ~1,000 reward-driven trials on a daily basis. We then developed a multichannel recording system that uses imaging to target a desired region of the cerebellum, allowing for simultaneous isolation of multiple Purkinje cells in the vermis. In this report, we describe 1) the design and surgical implantation of a computer tomography (CT)-guided, subject-specific head post, 2) the design of a CT- and MRI-guided alignment tool for trajectory guidance of electrodes mounted on an absolute encoder microdrive, 3) development of a protocol for behavioral training of subjects, and 4) simultaneous recordings from pairs of Purkinje cells during a saccade task.  more » « less
Award ID(s):
1723967
PAR ID:
10194662
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of neurophilosophy
Volume:
122
ISSN:
1307-6531
Page Range / eLocation ID:
1502-1517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The cerebellum is considered a “learning machine” essential for time interval estimation underlying motor coordination and other behaviors. Theoretical work has proposed that the cerebellum’s input recipient structure, the granule cell layer (GCL), performs pattern separation of inputs that facilitates learning in Purkinje cells (P-cells). However, the relationship between input reformatting and learning has remained debated, with roles emphasized for pattern separation features from sparsification to decorrelation. We took a novel approach by training a minimalist model of the cerebellar cortex to learn complex time-series data from time-varying inputs, typical during movements. The model robustly produced temporal basis sets from these inputs, and the resultant GCL output supported better learning of temporally complex target functions than mossy fibers alone. Learning was optimized at intermediate threshold levels, supporting relatively dense granule cell activity, yet the key statistical features in GCL population activity that drove learning differed from those seen previously for classification tasks. These findings advance testable hypotheses for mechanisms of temporal basis set formation and predict that moderately dense population activity optimizes learning. NEW & NOTEWORTHY During movement, mossy fiber inputs to the cerebellum relay time-varying information with strong intrinsic relationships to ongoing movement. Are such mossy fibers signals sufficient to support Purkinje signals and learning? In a model, we show how the GCL greatly improves Purkinje learning of complex, temporally dynamic signals relative to mossy fibers alone. Learning-optimized GCL population activity was moderately dense, which retained intrinsic input variance while also performing pattern separation. 
    more » « less
  2. Blackwell, Kim T. (Ed.)
    Transcranial direct current stimulation (tDCS) of the cerebellum has rapidly raised interest but the effects of tDCS on cerebellar neurons remain unclear. Assessing the cellular response to tDCS is challenging because of the uneven, highly stratified cytoarchitecture of the cerebellum, within which cellular morphologies, physiological properties, and function vary largely across several types of neurons. In this study, we combine MRI-based segmentation of the cerebellum and a finite element model of the tDCS-induced electric field (EF) inside the cerebellum to determine the field imposed on the cerebellar neurons throughout the region. We then pair the EF with multicompartment models of the Purkinje cell (PC), deep cerebellar neuron (DCN), and granule cell (GrC) and quantify the acute response of these neurons under various orientations, physiological conditions, and sequences of presynaptic stimuli. We show that cerebellar tDCS significantly modulates the postsynaptic spiking precision of the PC, which is expressed as a change in the spike count and timing in response to presynaptic stimuli. tDCS has modest effects, instead, on the PC tonic firing at rest and on the postsynaptic activity of DCN and GrC. In Purkinje cells, anodal tDCS shortens the repolarization phase following complex spikes (-14.7 ± 6.5% of baseline value, mean ± S.D.; max: -22.7%) and promotes burstiness with longer bursts compared to resting conditions. Cathodal tDCS, instead, promotes irregular spiking by enhancing somatic excitability and significantly prolongs the repolarization after complex spikes compared to baseline (+37.0 ± 28.9%, mean ± S.D.; max: +84.3%). tDCS-induced changes to the repolarization phase and firing pattern exceed 10% of the baseline values in Purkinje cells covering up to 20% of the cerebellar cortex, with the effects being distributed along the EF direction and concentrated in the area under the electrode over the cerebellum. Altogether, the acute effects of tDCS on cerebellum mainly focus on Purkinje cells and modulate the precision of the response to synaptic stimuli, thus having the largest impact when the cerebellar cortex is active. Since the spatiotemporal precision of the PC spiking is critical to learning and coordination, our results suggest cerebellar tDCS as a viable therapeutic option for disorders involving cerebellar hyperactivity such as ataxia. 
    more » « less
  3. Objectives: We set out to develop a machine learning model capable of distinguishing patients presenting with ischemic stroke from a healthy cohort of subjects. The model relies on a 3-min resting electroencephalogram (EEG) recording from which features can be computed. Materials and methods: Using a large-scale, retrospective database of EEG recordings and matching clinical reports, we were able to construct a dataset of 1385 healthy subjects and 374 stroke patients. With subjects often producing more than one recording per session, the final dataset consisted of 2401 EEG recordings (63% healthy, 37% stroke). Results: Using a rich set of features encompassing both the spectral and temporal domains, our model yielded an AUC of 0.95, with a sensitivity and specificity of 93% and 86%, respectively. Allowing for multiple recordings per subject in the training set boosted sensitivity by 7%, attributable to a more balanced dataset. Conclusions: Our work demonstrates strong potential for the use of EEG in conjunction with machine learning methods to distinguish stroke patients from healthy subjects. Our approach provides a solution that is not only timely (3-minutes recording time) but also highly precise and accurate (AUC: 0.95). Keywords: Electroencephalogram (EEG); Feature engineering; Ischemic stroke; Large vessel occlusion; Machine learning; Prehospital stroke scale. 
    more » « less
  4. Abstract The cerebellum regulates nonmotor behavior, but the routes of influence are not well characterized. Here we report a necessary role for the posterior cerebellum in guiding a reversal learning task through a network of diencephalic and neocortical structures, and in flexibility of free behavior. After chemogenetic inhibition of lobule VI vermis or hemispheric crus I Purkinje cells, mice could learn a water Y-maze but were impaired in ability to reverse their initial choice. To map targets of perturbation, we imaged c-Fos activation in cleared whole brains using light-sheet microscopy. Reversal learning activated diencephalic and associative neocortical regions. Distinctive subsets of structures were altered by perturbation of lobule VI (including thalamus and habenula) and crus I (including hypothalamus and prelimbic/orbital cortex), and both perturbations influenced anterior cingulate and infralimbic cortex. To identify functional networks, we used correlated variation in c-Fos activation within each group. Lobule VI inactivation weakened within-thalamus correlations, while crus I inactivation divided neocortical activity into sensorimotor and associative subnetworks. In both groups, high-throughput automated analysis of whole-body movement revealed deficiencies in across-day behavioral habituation to an open-field environment. Taken together, these experiments reveal brainwide systems for cerebellar influence that affect multiple flexible responses. 
    more » « less
  5. Modern recordings of neural activity provide diverse observations of neurons across brain areas, behavioral conditions, and subjects; presenting an exciting opportunity to reveal the fundamentals of brain-wide dynamics. Current analysis methods, however, often fail to fully harness the richness of such data, as they provide either uninterpretable representations (e.g., via deep networks) or oversimplify models (e.g., by assuming stationary dynamics or analyzing each session independently). Here, instead of regarding asynchronous neural recordings that lack alignment in neural identity or brain areas as a limitation, we leverage these diverse views into the brain to learn a unified model of neural dynamics. Specifically, we assume that brain activity is driven by multiple hidden global sub-circuits. These sub-circuits represent global basis interactions between neural ensembles—functional groups of neurons—such that the time-varying decomposition of these sub-circuits defines how the ensembles’ interactions evolve over time non-stationarily and non-linearly. We discover the neural ensembles underlying non-simultaneous observations, along with their non-stationary evolving interactions, with our new model, CREIMBO (Cross-Regional Ensemble Interactions in Multi-view Brain Observations). CREIMBO identifies the hidden composition of per-session neural ensembles through novel graph-driven dictionary learning and models the ensemble dynamics on a low-dimensional manifold spanned by a sparse time-varying composition of the global sub-circuits. Thus, CREIMBO disentangles overlapping temporal neural processes while preserving interpretability due to the use of a shared underlying sub-circuit basis. Moreover, CREIMBO distinguishes session-specific computations from global (session-invariant) ones by identifying session covariates and variations in sub-circuit activations. We demonstrate CREIMBO’s ability to recover true components in synthetic data, and uncover meaningful brain dynamics in human high-density electrode recordings, including cross-subject neural mechanisms as well as inter- vs. intra-region dynamical motifs. Furthermore, using mouse whole-brain recordings, we show CREIMBO’s ability to discover dynamical interactions that capture task and behavioral variables and meaningfully align with the biological importance of the brain areas they represent 
    more » « less