Per- and polyfluorinated chemicals (PFAS) are of rising concern due to environmental persistence and emerging evidence of health risks to humans. Environmental persistence is largely attributed to a failure of microbes to degrade PFAS. PFAS recalcitrance has been proposed to result from chemistry, specifically C-F bond strength, or biology, largely negative selection from fluoride toxicity. Given natural evolution has many hurdles, this review advocates for a strategy of laboratory engineering and evolution. Enzymes identified to participate in defluorination reactions have been discovered in all Enzyme Commission classes, providing a palette for metabolic engineering. In vivo PFAS biodegradation will require multiple types of reactions and powerful fluoride mitigation mechanisms to act in concert. The necessary steps are to: (1) engineer bacteria that survive very high, unnatural levels of fluoride, (2) design, evolve, and screen for enzymes that cleave C–F bonds in a broader array of substrates, and (3) create overall physiological conditions that make for positive selective pressure with PFAS substrates.
more »
« less
Real-time degradation dynamics of hydrated per- and polyfluoroalkyl substances (PFASs) in the presence of excess electrons
Per- and polyfluoroalkyl substances (PFASs) are synthetic chemicals that are harmful to both the environment and human health. Using self-interaction-corrected Born–Oppenheimer molecular dynamics simulations, we provide the first real-time assessment of PFAS degradation in the presence of excess electrons. In particular, we show that the initial phase of the degradation involves the transformation of an alkane-type C–C bond into an alkene-type CC bond in the PFAS molecule, which is initiated by the trans elimination of fluorine atoms bonded to these adjacent carbon atoms.
more »
« less
- Award ID(s):
- 1808242
- PAR ID:
- 10196128
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 22
- Issue:
- 13
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 6804 to 6808
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic organofluorine surfactants that are resistant to typical methods of degradation. Thermal techniques along with other novel, less energy-intensive techniques are currently being investigated for the treatment of PFAS-contaminated matrices. Non-equilibrium plasma is one technique that has shown promise for the treatment of PFAS-contaminated water. To better tailor non-equilibrium plasma systems for this application, knowledge of the energy required for mineralization, and in turn the roles that plasma reactive species and heat can play in this process, would be useful. In this study, fundamental thermodynamic equations were used to estimate the enthalpies of reaction (480 kJ/mol) and formation (−4640 kJ/mol) of perfluorooctanoic acid (PFOA, a long-chain legacy PFAS) in water. This enthalpy of reaction estimate indicates that plasma reactive species alone cannot catalyze the reaction; because the reaction is endothermic, energy input (e.g., heat) is required. The estimated enthalpies were used with HSC Chemistry software to produce a model of PFOA defluorination in a 100 mg/L aqueous solution as a function of enthalpy. The model indicated that as enthalpy of the reaction system increased, higher PFOA defluorination, and thus a higher extent of mineralization, was achieved. The model results were validated using experimental results from the gliding arc plasmatron (GAP) treatment of PFOA or PFOS-contaminated water using argon and air, separately, as the plasma gas. It was demonstrated that PFOA and PFOS mineralization in both types of plasma required more energy than predicted by thermodynamics, which was anticipated as the model did not take kinetics into account. However, the observed trends were similar to that of the model, especially when argon was used as the plasma gas. Overall, it was demonstrated that while energy input (e.g., heat) was required for the non-equilibrium plasma degradation of PFOA in water, a lower energy barrier was present with plasma treatment compared to conventional thermal treatments, and therefore mineralization was improved. Plasma reactive species, such as hydroxyl radicals (⋅OH) and/or hydrated electrons (e−(aq)), though unable to accelerate an endothermic reaction alone, likely served as catalysts for PFOA mineralization, helping to lower the energy barrier. In this study, the activation energies (Ea) for these species to react with the alpha C–F bond in PFOA were estimated to be roughly 1 eV for hydroxyl radicals and 2 eV for hydrated electrons.more » « less
-
null (Ed.)Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic organic substances with diverse structures, properties, uses, bioaccumulation potentials and toxicities. Despite this high diversity, all PFAS are alike in that they contain perfluoroalkyl moieties that are extremely resistant to environmental and metabolic degradation. The vast majority of PFAS are therefore either non-degradable or transform ultimately into stable terminal transformation products (which are still PFAS). Under the European chemicals regulation this classifies PFAS as very persistent substances (vP). We argue that this high persistence is sufficient concern for their management as a chemical class, and for all “non-essential” uses of PFAS to be phased out. The continual release of highly persistent PFAS will result in increasing concentrations and increasing probabilities of the occurrence of known and unknown effects. Once adverse effects are identified, the exposure and associated effects will not be easily reversible. Reversing PFAS contamination will be technically challenging, energy intensive, and costly for society, as is evident in the efforts to remove PFAS from contaminated land and drinking water sources.more » « less
-
null (Ed.)Per- and polyfluoroalkyl substances (PFAS) are of concern because of their high persistence (or that of their degradation products) and their impacts on human and environmental health that are known or can be deduced from some well-studied PFAS. Currently, many different PFAS (on the order of several thousands) are used in a wide range of applications, and there is no comprehensive source of information on the many individual substances and their functions in different applications. Here we provide a broad overview of many use categories where PFAS have been employed and for which function; we also specify which PFAS have been used and discuss the magnitude of the uses. Despite being non-exhaustive, our study clearly demonstrates that PFAS are used in almost all industry branches and many consumer products. In total, more than 200 use categories and subcategories are identified for more than 1400 individual PFAS. In addition to well-known categories such as textile impregnation, fire-fighting foam, and electroplating, the identified use categories also include many categories not described in the scientific literature, including PFAS in ammunition, climbing ropes, guitar strings, artificial turf, and soil remediation. We further discuss several use categories that may be prioritised for finding PFAS-free alternatives. Besides the detailed description of use categories, the present study also provides a list of the identified PFAS per use category, including their exact masses for future analytical studies aiming to identify additional PFAS.more » « less
-
Legacy and emerging per- and polyfluoroalkyl substances (PFAS) are widely detected in environmental and human samples because of their widespread use and resistance to degradation. Due to the increasing concern on health impacts of PFAS resulting from exposure to contaminated water, the development of novel materials to capture and remove PFAS from the environment is needed. Here, we present a self-assembling, fluorinated, zirconium-based metal–organic cage (F-ZrMOC) capable of capturing 37 different PFAS species, at an average of 82% removal from a solution that contains 400 ng/mL of each individual PFAS. The F-ZrMOC captured different classes of PFAS within 30 s, including perfluoroalkyl carboxylates, sulfonates, sulfonamides, ethoxylates, and fluorotelomer carboxylates/sulfonates/alcohols from water during in-vial, static, and flow through exposures (in which the F-ZrMOC is used as a solid phase extraction sorbent). Removal efficiency is higher for PFAS with chain lengths of seven carbons or higher; the presence of complex matrices such as untreated wastewater and groundwater samples did not significantly reduce the removal efficiencies for PFAS. The F-ZrMOC was characterized using 1H and 19F nuclear magnetic resonance (NMR) spectroscopy, and the stoichiometry of the synthesized cage was confirmed using Fourier transform-ion cyclotron resonance mass spectrometry. The surface area and pore size of F-ZrMOC were further determined by N2 and CO2 sorption measurements. 19F-NMR spectroscopy revealed that solvent plays an important role in the capture of PFAS; once the cages are in contact with methanol solution, captured PFAS are released.more » « less
An official website of the United States government

