skip to main content

Title: Predicting Farms’ Donations to Food Banks using the Analytic Hierarchical Process and Dempster Shafer Theory
We present an analysis of factors contributing to the annual level of donation of sweet potatoes in 2010-2016 to a North Carolina food bank. Our approach follows that of Su et al., who used the Analytic Hierarchy Process (AHP) and Dempster-Shafer theory (DST) to assess annual grain security in China for 1997-2007. We first identified the indices (or factors or criteria) that influence the level of donation and their “directions:” positive (the more the better), negative, or non-directional (average is best). We divided the range of each index into degrees (intervals) then applied AHP to get weights for the indices. To apply DST, we defined a frame of discernment that would generate focal elements that could be assigned to degrees of the indices. Then, using the index weights, we defined a BPA (basic probability function) for each year. Since for each year we had multiple pieces of possibly conflicting evidence, we used Dempster’s rule to combine each BPA with itself several times. In the resulting BPA, the focal element with greatest mass was taken as the prediction for the donation level for that year. We partitioned the range of the donation data into degrees to compare observations with the focal more » elements in the BPA. Predicted donation degrees matched observed degrees reasonably well if degree boundaries are well chosen. Analysis of apparent anomalies suggested a more sophisticated approach and the need to involve other information sources. This approach allows one to experiment in a principled way (and without assumptions about probability distributions) with the relative importance of the multiple factors that affect the predicted quantity and so to understand how these factors together contribute to that quantity. It is suggested for gaining preliminary insight, which may be exploited in the application of more rigid analytic techniques. « less
Award ID(s):
Publication Date:
Journal Name:
IEEE SoutheastCon 2020
Sponsoring Org:
National Science Foundation
More Like this
  1. Silva, Daniel de (Ed.)
    Biodiversity loss is a global ecological crisis that is both a driver of and response to environmental change. Understanding the connections between species declines and other components of human-natural systems extends across the physical, life, and social sciences. From an analysis perspective, this requires integration of data from different scientific domains, which often have heterogeneous scales and resolutions. Community science projects such as eBird may help to fill spatiotemporal gaps and enhance the resolution of standardized biological surveys. Comparisons between eBird and the more comprehensive North American Breeding Bird Survey (BBS) have found these datasets can produce consistent multi-year abundancemore »trends for bird populations at national and regional scales. Here we investigate the reliability of these datasets for estimating patterns at finer resolutions, inter-annual changes in abundance within town boundaries. Using a case study of 14 focal species within Massachusetts, we calculated four indices of annual relative abundance using eBird and BBS datasets, including two different modeling approaches within each dataset. We compared the correspondence between these indices in terms of multi-year trends, annual estimates, and inter-annual changes in estimates at the state and town-level. We found correspondence between eBird and BBS multi-year trends, but this was not consistent across all species and diminished at finer, inter-annual temporal resolutions. We further show that standardizing modeling approaches can increase index reliability even between datasets at coarser temporal resolutions. Our results indicate that multiple datasets and modeling methods should be considered when estimating species population dynamics at finer temporal resolutions, but standardizing modeling approaches may improve estimate correspondence between abundance datasets. In addition, reliability of these indices at finer spatial scales may depend on habitat composition, which can impact survey accuracy.« less
  2. The southern Appalachian forests have been threatened by several large-scale disturbances, such as wildfire and infestation, which alter the forest ecosystem structures and functions. Hemlock Woolly Adelgid (Adelges tsugae Annand, HWA) is a non-native pest that causes widespread foliar damage and eventual mortality, resulting in irreversible tree decline in eastern (Tsuga canadensis) and Carolina (T. caroliniana) hemlocks throughout the eastern United States. It is important to monitor the extent and severity of these disturbances over space and time to better understand their implications in the biogeochemical cycles of forest landscapes. Using all available Landsat images, we investigate and compare themore »performance of Tasseled Cap Transformation (TCT)-based indices, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Disturbance Index (DI) in capturing the spectral-temporal trajectory of both abrupt and gradual forest disturbances (e.g., fire and hemlock decline). For each Landsat pixel, the temporal trajectories of these indices were fitted into a time series model, separating the inter-annual disturbance patterns (low frequency) and seasonal phenology (high frequency) signals. We estimated the temporal dynamics of disturbances based on the residuals between the observed and predicted values of the model, investigated the performance of all the indices in capturing the hemlock decline intensity, and further validated the results with the number of individual dead hemlocks identified from high-resolution aerial images. Our results suggested that the overall performance of NDVI, followed by TCT wetness, was most accurate in detecting both the disturbance timing and hemlock decline intensity, explaining over 90% of the variability in the number of dead hemlocks. Despite the overall good performance of TCT wetness in characterizing the disturbance regime, our analysis showed that this index has some limitations in characterizing disturbances due to its recovery patterns following infestation.« less
  3. Abstract. We developed a new approach for mapping landslide hazards by combiningprobabilities of landslide impacts derived from a data-driven statisticalapproach and a physically based model of shallow landsliding. Ourstatistical approach integrates the influence of seven site attributes (SAs) onobserved landslides using a frequency ratio (FR) method. Influential attributesand resulting susceptibility maps depend on the observations of landslidesconsidered: all types of landslides, debris avalanches only, or source areasof debris avalanches. These observational datasets reflect the detection ofdifferent landslide processes or components, which relate to differentlandslide-inducing factors. For each landslide dataset, a stability index (SI) is calculated as a multiplicative result of themore »frequency ratios for all attributes and is mapped across our study domain in the North Cascades National Park Complex (NOCA), Washington, USA. A continuous function is developed to relate local SI values to landslide probability based on a ratio of landslide and non-landslide grid cells. The empirical model probability derived from the debris avalanche source area dataset is combined probabilistically with a previously developed physically based probabilistic model. A two-dimensional binning method employs empirical andphysically based probabilities as indices and calculates a joint probabilityof landsliding at the intersections of probability bins. A ratio of thejoint probability and the physically based model bin probability is used asa weight to adjust the original physically based probability at each gridcell given empirical evidence. The resulting integrated probability oflandslide initiation hazard includes mechanisms not captured by the infinite-slope stability model alone. Improvements in distinguishing potentiallyunstable areas with the proposed integrated model are statisticallyquantified. We provide multiple landslide hazard maps that land managers canuse for planning and decision-making, as well as for educating the publicabout hazards from landslides in this remote high-relief terrain.« less
  4. Abstract Social insect colonies exhibit a variety of life history strategies, from the annual, semelparous colonies of temperate bees and wasps to the long-lived colonies of many ants and honeybees. Species introduced to novel habitats may exhibit plasticity in life history strategies as a result of the introduction, but the factors governing these changes often remain obscure. Vespula pensylvanica , a yellowjacket wasp, exhibits such plasticity in colony longevity. Multi-year (perennial) colonies are relatively common in introduced populations in Hawaii, while source populations in the western United States are typically on an annual cycle. Here, we use experiments and observationalmore »data to examine how diet, disease, nest thermal environment, and nest location influence colony longevity in a population with both annual and perennial colonies. Counter to our predictions, experimental feeding and warming did not increase colony survival in the winter in the introduced range. However, Moku Virus load and wasp colony density predicted colony survival in one year, suggesting a potential role for disease in modulating colony phenology. We also found that local V. pensylvanica colony density was positively correlated with Moku Virus loads, and that Arsenophonus sp. bacterial loads in V. pensylvanica colonies were positively associated with proximity to feral honeybee ( Apis mellifera ) hives, suggesting potential transmission routes for these poorly understood symbionts. The factors influencing colony longevity in this population are likely multiple and interactive. More important than food availability, we propose winter precipitation as a critical factor that may explain temporal and spatial variation in colony longevity in these invasive wasps.« less
  5. A bstract Entanglement entropy, or von Neumann entropy, quantifies the amount of uncertainty of a quantum state. For quantum fields in curved space, entanglement entropy of the quantum field theory degrees of freedom is well-defined for a fixed background geometry. In this paper, we propose a generalization of the quantum field theory entanglement entropy by including dynamical gravity. The generalized quantity named effective entropy, and its Renyi entropy generalizations, are defined by analytic continuation of a replica calculation. The replicated theory is defined as a gravitational path integral with multiple copies of the original boundary conditions, with a co-dimension-2 branemore »at the boundary of region we are studying. We discuss different approaches to define the region in a gauge invariant way, and show that the effective entropy satisfies the quantum extremal surface formula. When the quantum fields carry a significant amount of entanglement, the quantum extremal surface can have a topology transition, after which an entanglement island region appears. Our result generalizes the Hubeny-Rangamani-Takayanagi formula of holographic entropy (with quantum corrections) to general geometries without asymptotic AdS boundary, and provides a more solid framework for addressing problems such as the Page curve of evaporating black holes in asymptotic flat spacetime. We apply the formula to two example systems, a closed two-dimensional universe and a four-dimensional maximally extended Schwarzchild black hole. We discuss the analog of the effective entropy in random tensor network models, which provides more concrete understanding of quantum information properties in general dynamical geometries. We show that, in absence of a large boundary like in AdS space case, it is essential to introduce ancilla that couples to the original system, in order for correctly characterizing quantum states and correlation functions in the random tensor network. Using the superdensity operator formalism, we study the system with ancilla and show how quantum information in the entanglement island can be reconstructed in a state-dependent and observer-dependent map. We study the closed universe (without spatial boundary) case and discuss how it is related to open universe.« less