skip to main content


Title: Toward Tradeoff Between Impact Force Reduction and Maximum Safe Speed: Dynamic Parameter Optimization of Variable Stiffness Robots
Abstract Variable stiffness robots may provide an effective way of trading-off between safety and speed during physical human–robot interaction. In such a compromise, the impact force reduction capability and maximum safe speed are two key performance measures. To quantitatively study how dynamic parameters such as mass, inertia, and stiffness affect these two performance measures, performance indices for impact force reduction capability and maximum speed of variable stiffness robots are proposed based on the impact ellipsoid in this paper. The proposed performance indices consider different impact directions and kinematic configurations in the large. Combining the two performance indices, the global performance of variable stiffness robots is defined. A two-step optimization method is designed to achieve this global performance. A two-link variable stiffness link robot example is provided to show the efficacy of the proposed method.  more » « less
Award ID(s):
1637656
NSF-PAR ID:
10197586
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Mechanisms and Robotics
Volume:
12
Issue:
5
ISSN:
1942-4302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we study the effects of mechanical compliance on safety in physical human–robot interaction (pHRI). More specifically, we compare the effect of joint compliance and link compliance on the impact force assuming a contact occurred between a robot and a human head. We first establish pHRI system models that are composed of robot dynamics, an impact contact model, and head dynamics. These models are validated by Simscape simulation. By comparing impact results with a robotic arm made of a compliant link (CL) and compliant joint (CJ), we conclude that the CL design produces a smaller maximum impact force given the same lateral stiffness as well as other physical and geometric parameters. Furthermore, we compare the variable stiffness joint (VSJ) with the variable stiffness link (VSL) for various actuation parameters and design parameters. While decreasing stiffness of CJs cannot effectively reduce the maximum impact force, CL design is more effective in reducing impact force by varying the link stiffness. We conclude that the CL design potentially outperforms the CJ design in addressing safety in pHRI and can be used as a promising alternative solution to address the safety constraints in pHRI. 
    more » « less
  2. Exoskeleton robots are capable of safe torque- controlled interactions with a wearer while moving their limbs through pre-defined trajectories. However, affecting and assist- ing the wearer’s movements while incorporating their inputs (effort and movements) effectively during an interaction re- mains an open problem due to the complex and variable nature of human motion. In this paper, we present a control algorithm that leverages task-specific movement behaviors to control robot torques during unstructured interactions by implementing a force field that imposes a desired joint angle coordination behavior. This control law, built by using principal component analysis (PCA), is implemented and tested with the Harmony exoskeleton. We show that the proposed control law is versatile enough to allow for the imposition of different coordination behaviors with varying levels of impedance stiffness. We also test the feasibility of our method for unstructured human-robot interaction. Specifically, we demonstrate that participants in a human-subject experiment are able to effectively perform reaching tasks while the exoskeleton imposes the desired joint coordination under different movement speeds and interaction modes. Survey results further suggest that the proposed control law may offer a reduction in cognitive or motor effort. This control law opens up the possibility of using the exoskeleton for training the participating in accomplishing complex m 
    more » « less
  3. Abstract

    Variable stiffness manipulators balance the trade-off between manipulation performance needing high stiffness and safe human-robot interaction desiring low stiffness. Variable stiffness compliant links provide a solution to enable this flexible manipulation function in human-robot co-working scenarios. In this paper, we propose a novel variable stiffness link based on discrete variable stiffness units (DSUs). A DSU is a parallel guided beam that can adjust stiffness discretely by changing the cross-sectional area properties of the hollow beam segments. The variable stiffness link (named Tri-DSU) consists of three tandem DSUs to achieve eight stiffness modes and a maximum stiffness change ratio of 31. To optimize the design, stiffness analysis of the DSU and Tri-DSU under various configurations and forces was performed by a derived theoretical model compared with finite element analysis (FEA). The analytical stiffness model is derived using the approach of serially connected beams and superposition combinations. It works not only for thin-walled flexure beams but also for general thick beam models. 3-D printed prototypes were built to verify the feature and performance of the Tri-DSU in comparison with the FEA and analytical model results. It’s demonstrated that our analytical model can accurately predict the stiffnesses of the DSU and Tri-DSU within a certain range of parameters. The developed variable stiffness link method and analytical model are extendable to multiple DSUs with different sizes and parameter configurations to achieve modularization and customization. The advantages of the stiffness change mechanism are rapid actuation, simple structure, and compact layout. These methods and results provide a new conceptual and theoretical basis for the development of new reconfigurable cobot manipulators, variable stiffness structures, and compliant mechanisms.

     
    more » « less
  4. Abstract The stiffness of robot legs greatly affects legged locomotion performance; tuning that stiffness, however, can be a costly and complex task. In this paper, we directly tune the stiffness of jumping robot legs using an origami-inspired laminate design and fabrication method. In addition to the stiffness coefficient described by Hooke’s law, the nonlinearity of the force-displacement curve can also be tuned by optimizing the geometry of the mechanism. Our method reduces the number of parts needed to realize legs with different stiffness while simplifying manual redesign effort, lowering the cost of legged robots while speeding up the design and optimization process. We have fabricated and tested the leg across six different stiffness profiles that vary both the nonlinearity and coefficient. Through a vertical jumping experiment actuated by a DC motor, we also show that proper tuning of the leg stiffness can result in an 18% improvement in lift-off speed and an increase of 19% in peak power output. 
    more » « less
  5. Abstract Variable stiffness manipulators balance the trade-off between manipulation performance needing high stiffness and safe human–robot interaction desiring low stiffness. Variable stiffness links enable this flexible manipulation function during human–robot interaction. In this paper, we propose a novel variable stiffness link based on discrete variable stiffness units (DSUs). A DSU is a parallel guided beam that can adjust stiffness discretely by changing the cross-sectional area properties of the hollow beam segments. The variable stiffness link (Tri-DSU) consists of three tandem DSUs to achieve eight stiffness modes and a stiffness ratio of 31. To optimize the design, stiffness analysis of the DSU and Tri-DSU under various configurations and forces was performed by a derived linear analytical model which applies to small/intermediate deflections. The model is derived using the approach of serially connected beams and superposition combinations. 3D-Printed prototypes were built to verify the feature and performance of the Tri-DSU in comparison with the finite element analysis and analytical model results. It’s demonstrated that our model can accurately predict the stiffnesses of the DSU and Tri-DSU within a certain range of parameters. Impact tests were also conducted to validate the performance of the Tri-DSU. The developed method and analytical model are extendable to multiple DSUs with parameter configurations to achieve modularization and customization, and also provide a tool for the design of reconfigurable collaborative robot (cobot) manipulators. 
    more » « less