skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding Container Network Interface Plugins: Design Considerations and Performance
Kubernetes, an open-source container orchestration platform, has been widely adopted by cloud service providers (CSPs) for its advantages in simplifying container deployment, scalability and scheduling. Networking is one of the central components of Kubernetes, providing connectivity between different pods (group of containers) both within the same host and across hosts. To bootstrap Kubernetes networking, the Container Network Interface (CNI) provides a unified interface for the interaction between container runtimes. There are several CNI implementations, available as open-source ‘CNI plugins’. While they differ in functionality and performance, it is a challenge for a cloud provider to differentiate and choose the appropriate plugin for their environment. In this paper, we compare the various open source CNI plugins available from the community, qualitatively and through detailed quantitative measurements. With our experimental evaluation, we analyze the overheads and bottlenecks for each CNI plugin, as a result of the network model it implements, interaction with the host network protocol stack and the network policies implemented in iptables rules. The choice of the CNI plugin may also be based on whether intra-host or inter-host communication dominates.  more » « less
Award ID(s):
1763929
PAR ID:
10197639
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
26th {IEEE} International Symposium on Local and Metropolitan Area Networks, {LANMAN} 2020, Orlando, FL, USA, July 13-15, 2020
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Edge and fog computing encompass a variety of technologies that are poised to enable new applications across the Internet that support data capture, storage, processing, and communication across the networking continuum. These environments pose new challenges to the design and implementation of networks-as membership can be dynamic and devices are heterogeneous, widely distributed geographically, and in proximity to end-users, as is the case with mobile and Internet-of-Things (IoT) devices. We present a demonstration of EdgeVPN.io (Evio for short), an open-source programmable, software-defined network that addresses challenges in the deployment of virtual networks spanning distributed edge and cloud resources, in particular highlighting its use in support of the Kubernetes container orchestration middleware. The demo highlights a deployment of unmodified Kubernetes middleware across a virtual cluster comprising virtual machines deployed both in cloud providers, and in distinct networks at the edge-where all nodes are assigned private IP addresses and subject to different NAT (Network Address Translation) middleboxes, connected through an Evio virtual network. The demo includes an overview of the configuration of Kubernetes and Evio nodes and the deployment of Docker-based container pods, highlighting the seamless connectivity for TCP/IP applications deployed on the pods. 
    more » « less
  2. null (Ed.)
    With the advent of the fourth industrial revolution, industry practitioners are moving towards container-based infrastructure for managing their digital workloads. Kubernetes, a container orchestration tool, is reported to help industry practitioners in automated management of cloud infrastructure and rapid deployment of software services. Despite reported benefits, Kubernetes installations are susceptible to security defects, as it occurred for Tesla in 2018. Understanding how frequently security defects appear in Kubernetes installations can help cybersecurity researchers to investigate security-related vulnerabilities for Kubernetes and generate security best practices to avoid them. In this position paper, we first quantify how frequently security defects appear in Kubernetes manifests, i.e., configuration files that are use to install and manage Kubernetes. Next, we lay out a list of future research directions that researchers can pursue.We apply qualitative analysis on 5,193 commits collected from 38 open source repositories and observe that 0.79% of the 5,193 commits are security-related. Based on our findings, we posit that security-related defects are under-reported and advocate for rigorous research that can systematically identify undiscovered security defects that exist in Kubernetes manifests. We predict that the increasing use of Kubernetes with unresolved security defects can lead to large-scale security breaches. 
    more » « less
  3. De_Vita, R; Espinal, X; Laycock, P; Shadura, O (Ed.)
    The OSG-operated Open Science Pool is an HTCondor-based virtual cluster that aggregates resources from compute clusters provided by several organizations. Most of the resources are not owned by OSG, so demand-based dynamic provisioning is important for maximizing usage without incurring excessive waste. OSG has long relied on GlideinWMS for most of its resource provisioning needs but is limited to resources that provide a Grid-compliant Compute Entrypoint. To work around this limitation, the OSG Software Team has developed a glidein container that resource providers could use to directly contribute to the OSPool. The problem with that approach is that it is not demand-driven, relegating it to backfill scenarios only. To address this limitation, a demand-driven direct provisioner of Kubernetes resources has been developed and successfully used on the NRP. The setup still relies on the OSG-maintained backfill container image but automates the provisioning matchmaking and successive requests. That provisioner has also been extended to support Lancium, a green computing cloud provider with a Kubernetes-like proprietary interface. The provisioner logic has been intentionally kept very simple, making this extension a low-cost project. Both NRP and Lancium resources have been provisioned exclusively using this mechanism for many months. 
    more » « less
  4. Modern developers rely on container-orchestration frameworks like Kubernetes to deploy and manage hybrid workloads that span the edge and cloud. When network conditions between the edge and cloud change unexpectedly, a workload must adapt its internal behavior. Unfortunately, container-orchestration frameworks do not offer an easy way to express, deploy, and manage adaptation strategies. As a result, fine-tuning or modifying a workload's adaptive behavior can require modifying containers built from large, complex codebases that may be maintained by separate development teams. This paper presents BumbleBee, a lightweight extension for container-orchestration frameworks that separates the concerns of application logic and adaptation logic. BumbleBee provides a simple in-network programming abstraction for making decisions about network data using application semantics. Experiments with a BumbleBee prototype show that edge ML-workloads can adapt to network variability and survive disconnections, edge stream-processing workloads can improve benchmark results between 37.8% and 23x , and HLS video-streaming can reduce stalled playback by 77%. 
    more » « less
  5. Eye-tracking is an essential tool in many fields, yet existing solutions are often limited for customized applications due to cost or lack of flexibility. We present OpenIris, an adaptable and user-friendly open-source framework for video-based eye-tracking. OpenIris is developed in C# with modular design that allows further extension and customization through plugins for different hardware systems, tracking, and calibration pipelines. It can be remotely controlled via a network interface from other devices or programs. Eye movements can be recorded online from camera stream or offline post-processing recorded videos. Example plugins have been developed to track eye motion in 3-D, including torsion. Currently implemented binocular pupil tracking pipelines can achieve frame rates of more than 500Hz. With the OpenIris framework, we aim to fill a gap in the research tools available for high-precision and high-speed eye-tracking, especially in environments that require custom solutions that are not currently well-served by commercial eye-trackers. 
    more » « less