skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: BumbleBee: Application-aware adaptation for edge-cloud orchestration
Modern developers rely on container-orchestration frameworks like Kubernetes to deploy and manage hybrid workloads that span the edge and cloud. When network conditions between the edge and cloud change unexpectedly, a workload must adapt its internal behavior. Unfortunately, container-orchestration frameworks do not offer an easy way to express, deploy, and manage adaptation strategies. As a result, fine-tuning or modifying a workload's adaptive behavior can require modifying containers built from large, complex codebases that may be maintained by separate development teams. This paper presents BumbleBee, a lightweight extension for container-orchestration frameworks that separates the concerns of application logic and adaptation logic. BumbleBee provides a simple in-network programming abstraction for making decisions about network data using application semantics. Experiments with a BumbleBee prototype show that edge ML-workloads can adapt to network variability and survive disconnections, edge stream-processing workloads can improve benchmark results between 37.8% and 23x , and HLS video-streaming can reduce stalled playback by 77%.  more » « less
Award ID(s):
1717064
PAR ID:
10506915
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEEACM Symposium on Edge Computing
ISSN:
2837-4827
ISBN:
978-1-6654-8611-8
Page Range / eLocation ID:
122 to 135
Format(s):
Medium: X
Location:
Seattle, WA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. The HPC community is actively researching and evaluating tools to support execution of scientific applications in cloud-based environ- ments. Among the various technologies, containers have recently gained importance as they have significantly better performance compared to full-scale virtualization, support for microservices and DevOps, and work seamlessly with workflow and orchestration tools. Docker is currently the leader in containerization technology because it offers low overhead, flexibility, portability of applications, and reproducibility. Singularity is another container solution that is of interest as it is designed specifically for scientific applications. It is important to conduct performance and feature analysis of the container technologies to understand their applicability for each application and target execution environment. This paper presents a (1) performance evaluation of Docker and Singularity on bare metal nodes in the Chameleon cloud (2) mecha- nism by which Docker containers can be mapped with InfiniBand hardware with RDMA communication and (3) analysis of mapping elements of parallel workloads to the containers for optimal re- source management with container-ready orchestration tools. Our experiments are targeted toward application developers so that they can make informed decisions on choosing the container tech- nologies and approaches that are suitable for their HPC workloads on cloud infrastructure. Our performance analysis shows that sci- entific workloads for both Docker and Singularity based containers can achieve near-native performance. Singularity is designed specifically for HPC workloads. However, Docker still has advantages over Singularity for use in clouds as it provides overlay networking and an intuitive way to run MPI applications with one container per rank for fine-grained resources allocation. Both Docker and Singularity make it possible to directly use the underlying network fabric from the containers for coarse- grained resource allocation. 
    more » « less
  2. Edge computing is a distributed computing paradigm that moves data-intensive applications and services (e.g., AI) closer to the data source. The rapid growth of edge endpoints connected to the Internet today poses several challenges in scalable application life cycle management. That is, managing data and workloads on several thousand, up to millions of edge endpoints, challenged by limited connectivity, resource constraints, network and edge endpoint failures. In this work, we present EdgeRDV, a new edge abstraction that builds on the idea of rendezvous nodes to manage edge workloads at scale. The EdgeRDV architecture is comprised of a central cloud management endpoint (or cloud hub), a central gateway for each edge site (or edge hub), redundant gateways (or rendezvous nodes), and edge endpoints. Beyond its scalable architecture, EdgeRDV presents new techniques and algorithms that address single points of failures and provide adjustable levels of resilience and cost-effectiveness in edge network deployments. We conducted preliminary experiments to evaluate EdgeRDV, through simulations, and our results show that EdgeRDV requires one to three orders of magnitude fewer intermediate nodes compared to relay structures, can gracefully adapt to failures, and requires a constant number of messages during failure recovery in edge sites with up to 667K+ edge endpoints. 
    more » « less
  3. Edge application’s distributed nature presents significant challenges for developers in orchestrating and managing the multitenant applications. In this paper, we propose a practical edge cloud software framework for deploying multitenant distributed smart applications. Here we exploit commodity, a low cost embedded board to form distributed edge clusters. The cluster of geo-distributed and wireless edge nodes not only power multitenant IoT applications that are closer to the data source and the user, but also enable developers to remotely deploy and orchestrate application containers over the cloud. Specifically, we propose building a software platform to manage the distributed edge nodes along with support services to deploy and launch isolated and multitenant user applications through a lightweight container. In particular, we propose an architectural solution to improve the resilience of edge cloud services through peer collaborated service migration when the failures happen or when resources are overburdened. We focus on giving the developers a single point control of the infrastructure over the intermittent and lossy wide area networks (WANs) and enabling the remote deployment of multitenant applications. 
    more » « less
  4. During the past few years, serverless computing has changed the paradigm of application development and deployment in the cloud and edge due to its unique advantages, including easy administration, automatic scaling, built-in fault tolerance, etc. Nevertheless, serverless computing is also facing challenges such as long latency due to the cold start. In this paper, we present an in-depth performance analysis of cold start in the serverless framework and propose HotC, a container-based runtime management framework that leverages the lightweight containers to mitigate the cold start and improve the network performance of serverless applications. HotC maintains a live container runtime pool, analyzes the user input or configuration file, and provides available runtime for immediate reuse. To precisely predict the request and efficiently manage the hot containers, we design an adaptive live container control algorithm combining the exponential smoothing model and Markov chain method. Our evaluation results show that HotC introduces negligible overhead and can efficiently improve the performance of various applications with different network traffic patterns in both cloud servers and edge devices. 
    more » « less
  5. The rapid growth in technology and wide use of internet has increased smart applications such as intelligent transportation control system, and Internet of Things, which heavily rely on an efficient and reliable connectivity network. To overcome high bandwidth work load on the network, as well as minimize latency for real-time applications, the computation can be moved from the central cloud to a distributed edge cloud. The edge computing benefits various smart applications that uses distributed network for data analytics and services. Different from the existing cloud management solutions, edge computing needs to move cloud management services towards distributed heterogeneous edge nodes for multi-tenant user applications. However, existing cloud management services do not offer remote deployment of multi-tenant user applications on the cloud of edge nodes. In this paper, we propose a practical edge cloud software framework for deploying multi-tenant distributed smart applications. Having multiple distributed end nodes, auto discovery of all active end nodes is required for deploying multi-tenant user applications. However, existing cloud solutions require either private network or fixed IP address, which is not achievable for the distributed edge nodes. Most of the edge nodes connected through the public internet without fixed IP, and some of them even connect through IEEE 802.15 based sensor networks. We propose to build a software platform to manage the distributed edge nodes as well as support services to deploy and launch isolated, multi-tenant user applications through a lightweight container. We propose an architectural solution to remotely access edge cloud management services through intermittent internet connections. We open sourced our whole set of software solutions, and analyzed the major performance metrics of the edge cloud platform. 
    more » « less