skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chemically controlled shape-morphing of elastic sheets
Two-dimensional responsive materials that change shape into complex three-dimensional structures are valuable for creating systems ranging from wearable electronics to soft robotics. Typically, the final 3D structure is unique and predetermined through the materials’ processing. Here, we use theory and simulation to devise a distinctive approach for driving shape changes of 2D elastic sheets in fluid-filled microchambers. The sheets are coated with catalyst to generate controllable fluid flows, which transform the sheets into complex 3D shapes. A given shape can be achieved by patterning the arrangement of the catalytic domains on the sheet and introducing the appropriate reactant to initiate a specific catalytic reaction. Moreover, a single sheet that encompasses multiple catalytic domains can be transformed into a variety of 3D shapes through the addition of one or more reactants. Materials systems that morph on-demand into a variety of distinct structures can simplify manufacturing processes and broaden the utility of soft materials.  more » « less
Award ID(s):
1740630
PAR ID:
10197862
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Materials Horizons
Volume:
7
Issue:
9
ISSN:
2051-6347
Page Range / eLocation ID:
2314 to 2327
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Based on computational modeling, the interaction between catalyst-coated surfaces and flexible micro-to-mesoscale two-dimensional (2D) sheets in solution promotes the self-organization of individual sheets into complex three-dimensional (3D) dynamic forms, including intertwined, self-spinning structures, coupled oscillators and motile, shape-shifting layers. These findings can hasten the development of active, reconfigurable interfaces needed for human–machine interactions. Furthermore, one sheet that autonomously reconfigures into multiple 3D shapes is beneficial for manufacturing, reducing the need to fabricate a new structure for each separate application. More generally, because the flexible 2D sheets display greater degrees of freedom than the previously studied hard zero-dimensional and one-dimensional particles, these elastic layers can reveal new, dynamic behavior in chemically active systems. Graphical abstract 
    more » « less
  2. Three-dimensional (3D) printing has expanded beyond the mere patterned deposition of melted solids, moving into areas requiring spatially structured soft matter—typically materials composed of polymers, colloids, surfactants, or living cells. The tunable and dynamically variable rheological properties of soft matter enable the high-resolution manufacture of soft structures. These rheological properties are leveraged in 3D printing techniques that employ sacrificial inks and sacrificial support materials, which go through reversible solid–fluid transitions under modest forces or other small perturbations. Thus, a sacrificial material can be used to shape a second material into a complex 3D structure, and then discarded. Here, we review the sacrificial materials and related methods used to print soft structures. We analyze data from the literature to establish manufacturing principles of soft matter printing, and we explore printing performance within the context of instabilities controlled by the rheology of soft matter materials. 
    more » « less
  3. Abstract Two-dimensional (2D) growth-induced 3D shaping enables shape-morphing materials for diverse applications. However, quantitative design of 2D growth for arbitrary 3D shapes remains challenging. Here we show a 2D material programming approach for 3D shaping, which prints hydrogel sheets encoded with spatially controlled in-plane growth (contraction) and transforms them to programmed 3D structures. We design 2D growth for target 3D shapes via conformal flattening. We introduce the concept of cone singularities to increase the accessible space of 3D shapes. For active shape selection, we encode shape-guiding modules in growth that direct shape morphing toward target shapes among isometric configurations. Our flexible 2D printing process enables the formation of multimaterial 3D structures. We demonstrate the ability to create 3D structures with a variety of morphologies, including automobiles, batoid fish, and real human face. 
    more » « less
  4. Shaping 3D objects from 2D sheets enables form and function in diverse areas from art to engineering. Here we introduce kuttsukigami, which exploits sheet-sheet adhesion to create structure. The technique allows thin sheets to be sculpted without requiring sharp folds, enabling structure in a broad range of materials for a versatile and reconfigurable thin-sheet engineering design scheme. Simple closed structures from cylindrical loops to complex shapes like the Möbius loop are constructed and modeled through the balance between deformation and adhesion. Importantly, the balance can be used to create experimental measurements of elasticity in complex morphologies. More practically, kuttsukigami is demonstrated to encapsulate objects from the kitchen to micro scales and to build on-demand logic gates through sticky electronic sheets for truly reusable, reconfigurable devices. 
    more » « less
  5. Catalyst-coated, hard particles can spontaneously generate fluid flows, which, in turn, propel the particles through the fluid. If the catalyst-coated object were a deformable sheet, then the self-generated flows could affect not only the sheet’s motion but also its shape. By developing models that capture the interrelated chemical, hydrodynamic, and mechanical interactions, we uncover novel behavior emerging from the previously unstudied coupling between active, soft sheets and the surrounding fluid. The chemically generated flows “sculpt” the sheet into various forms that yield different functionalities, which can be tailored by modifying the sheet’s geometry, patterning the sheet’s surface with different catalysts, and using cascades of chemical reactions. These studies reveal how to achieve both spatial and temporal controls over the position and shape of active sheets and thus use the layers to autonomously and controllably trap soft objects, perform logic operations, and execute multistage processes in fluid-filled microchambers. 
    more » « less