skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stopping Resistance Drift in Phase Change Memory Cells
Phase change memory (PCM) is a high speed, high endurance, high density non-volatile memory technology that utilizes chalcogenide materials such as Ge 2 Sb 2 Te 5 (GST) that can be electrically cycled between highly resistive amorphous and low resistance crystalline phases. The resistance of the amorphous phase of PCM cells increase (drift) in time following a power law [1] , which increases the memory window in time but limits in the implementation of multi-bit-per-cell PCM. There has been a number of theories explaining the origin of drift [1] - [4] , mostly attributing it to structural relaxation, a thermally activated rearrangement of atoms in the amorphous structure [2] . Most of the studies on resistance drift are based on experiments at or above room temperature, where multiple processes may be occurring simultaneously. In this work, we melt-quenched amorphized GST line cells with widths ~120-140 nm, lengths ~390-500 nm, and thickness ~50nm ( Fig. 1 ) and monitored the current-voltage (I-V) characteristics using a parameter analyzer ( Fig. 2 ) in 85 K to 350 K range. We extracted the drift co-efficient from the slope of the resistance vs. time plots (using low-voltage measurements) and observed resistance drift in the 125 K -300 K temperature range ( Fig. 3 ). We found an approximately linear increase in drift coefficient as a function of temperature from ~ 0.07 at 125 K to ~ 0.11 at 200 K and approximately constant drift coefficients in the 200 K to 300 K range ( Fig. 3 inset). These results suggest that structural relaxations alone cannot account for resistance drift, additional mechanisms are contributing to this phenomenon [5] , [6] .  more » « less
Award ID(s):
1711626
PAR ID:
10198070
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Device Research Conference
Page Range / eLocation ID:
1 to 2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We stabilize resistance of melt-quenched amorphous Ge2Sb2Te5 (a-GST) phase change memory (PCM) line cells by substantially accelerating resistance drift and bringing it to a stop within a few minutes with application of high electric field stresses. The acceleration of drift is clearly observable at electric fields > 26 MV/m at all temperatures (85 K - 300 K) and is independent of the current forced through the device, which is a strong function of temperature. The low-field (< 21 MV/m) I-V characteristics of the stabilized cells measured in 85 K - 300 K range fit well to a 2D thermally-activated hopping transport model, yielding hopping distances in the direction of the field and activation energies ranging from 2 nm and 0.2 eV at 85 K to 6 nm and 0.4 eV at 300 K. Hopping transport appears to be better aligned with the field direction at higher temperatures. The high-field current response to voltage is significantly stronger and displays a distinctly different characteristic: the differential resistances at different temperatures extrapolate to a single point (8.9x10-8 this http URL), comparable to the resistivity of copper at 60 K, at 65.6 +/- 0.4 MV/m. The physical mechanisms that give rise to the substantial increase in current in the high-field regime also accelerate resistance drift. We constructed field and temperature dependent conduction models based on the experimental results and integrated it with our electro-thermal finite element device simulation framework to analyze reset, set and read operations of PCM devices. 
    more » « less
  2. We characterized resistance drift in phase change memory devices in the 80 K to 300 K temperature range by performing measurements on 20 nm thick, ∼70–100 nm wide lateral Ge2Sb2Te5(GST) line cells. The cells were amorphized using 1.5–2.5 V pulses with ∼50–100 ns duration leading to ∼0.4–1.1 mA peak reset currents resulting in amorphized lengths between ∼50 and 700 nm. Resistance drift coefficients in the amorphized cells are calculated using constant voltage measurements starting as fast as within a second after amorphization and for 1 h duration. Drift coefficients range between ∼0.02 and 0.1 with significant device-to-device variability and variations during the measurement period. At lower temperatures (higher resistance states) some devices show a complex dynamic behavior, with the resistance repeatedly increasing and decreasing significantly over periods in the order of seconds. These results point to charge trapping and de-trapping events as the cause of resistance drift. 
    more » « less
  3. Phase‐change memory is an emerging technology that utilizes the electrical resistivity contrast between the amorphous and crystalline phases of chalcogenide glasses to store data. The most commonly used material for PCM has been GeSbTe (GST), which has metastable amorphous and crystalline fcc phases and a stable crystalline hcp phase [1]. One difficulty with the implementation of PCM is the upward resistance drift of the metastable amorphous and crystalline fcc phases. We are using electrical characterization together with transmission electron microscopy and finite‐element electrothermal simulations [2] to study the physical mechanisms that give rise to the electrical resistance drift of GST cells. 
    more » « less
  4. Abstract Non‐volatile phase‐change memory (PCM) devices are based on phase‐change materials such as Ge2Sb2Te(GST). PCM requires critically high crystallization growth velocity (CGV) for nanosecond switching speeds, which makes its material‐level kinetics investigation inaccessible for most characterization methods and remains ambiguous. In this work, nanocalorimetry enters this “no‐man's land” with scanning rate up to 1 000 000 K s−1(fastest heating rate among all reported calorimetric studies on GST) and smaller sample‐size (10–40 nm thick) typical of PCM devices. Viscosity of supercooled liquid GST (inferred from the crystallization kinetic) exhibits Arrhenius behavior up to 290 °C, indicating its low fragility nature and thus a fragile‐to‐strong crossover at ≈410 °C. Thin‐film GST crystallization is found to be a single‐step Arrhenius process dominated by growth of interfacial nuclei with activation energy of 2.36 ±  0.14 eV. Calculated CGV is consistent with that of actual PCM cells. This addresses a 10‐year‐debate originated from the unexpected non‐Arrhenius kinetics measured by commercialized chip‐based calorimetry, which reports CGV 103−105higher than those measured using PCM cells. Negligible thermal lag (<1.5 K) and no delamination is observed in this work. Melting, solidification, and specific heat of GST are also measured and agree with conventional calorimetry of bulk samples. 
    more » « less
  5. We calculate critical electronic conduction parameters of the amorphous phase of Ge 2 Sb 2 Te 5 (GST), a common material used in phase change memory. We estimate the room temperature bandgap of metastable amorphous GST to be E g (300K) = 1.84 eV based on a temperature dependent energy band model. We estimate the free carrier concentration at the melting temperature utilizing the latent heat of fusion to be 1.47 x 10 22 cm -3 . Using the thin film melt resistivity, we calculate the carrier mobility at melting point as 0.187 cm 2 /V-s. Assuming that metastable amorphous GST is a supercooled liquid with bipolar conduction, we compute the total carrier concentration as a function of temperature and estimate the room temperature free carrier concentration as p(300K) ≈ n(300K) = 1.69×10 17 cm -3 . Free electrons and holes are expected to recombine over time and the stable (drifted) amorphous GST is estimated to have p-type conduction with p(300K) ≈ 6×10 16 cm -3 . 
    more » « less