Phase change memory (PCM) is a high speed, high endurance, high density non-volatile memory technology that utilizes chalcogenide materials such as Ge 2 Sb 2 Te 5 (GST) that can be electrically cycled between highly resistive amorphous and low resistance crystalline phases. The resistance of the amorphous phase of PCM cells increase (drift) in time following a power law [1] , which increases the memory window in time but limits in the implementation of multi-bit-per-cell PCM. There has been a number of theories explaining the origin of drift [1] - [4] , mostly attributing it to structural relaxation, a thermally activated rearrangement of atoms in the amorphous structure [2] . Most of the studies on resistance drift are based on experiments at or above room temperature, where multiple processes may be occurring simultaneously. In this work, we melt-quenched amorphized GST line cells with widths ~120-140 nm, lengths ~390-500 nm, and thickness ~50nm ( Fig. 1 ) and monitored the current-voltage (I-V) characteristics using a parameter analyzer ( Fig. 2 ) in 85 K to 350 K range. We extracted the drift co-efficient from the slope of the resistance vs. time plots (using low-voltage measurements) and observed resistance drift in the 125 K -300 K temperature range ( Fig. 3 ). We found an approximately linear increase in drift coefficient as a function of temperature from ~ 0.07 at 125 K to ~ 0.11 at 200 K and approximately constant drift coefficients in the 200 K to 300 K range ( Fig. 3 inset). These results suggest that structural relaxations alone cannot account for resistance drift, additional mechanisms are contributing to this phenomenon [5] , [6] .
more »
« less
Stopping Resistance Drift in Phase Change Memory Cells and Analysis of Charge Transport in Stable Amorphous Ge2Sb2Te5
We stabilize resistance of melt-quenched amorphous Ge2Sb2Te5 (a-GST) phase change memory (PCM) line cells by substantially accelerating resistance drift and bringing it to a stop within a few minutes with application of high electric field stresses. The acceleration of drift is clearly observable at electric fields > 26 MV/m at all temperatures (85 K - 300 K) and is independent of the current forced through the device, which is a strong function of temperature. The low-field (< 21 MV/m) I-V characteristics of the stabilized cells measured in 85 K - 300 K range fit well to a 2D thermally-activated hopping transport model, yielding hopping distances in the direction of the field and activation energies ranging from 2 nm and 0.2 eV at 85 K to 6 nm and 0.4 eV at 300 K. Hopping transport appears to be better aligned with the field direction at higher temperatures. The high-field current response to voltage is significantly stronger and displays a distinctly different characteristic: the differential resistances at different temperatures extrapolate to a single point (8.9x10-8 this http URL), comparable to the resistivity of copper at 60 K, at 65.6 +/- 0.4 MV/m. The physical mechanisms that give rise to the substantial increase in current in the high-field regime also accelerate resistance drift. We constructed field and temperature dependent conduction models based on the experimental results and integrated it with our electro-thermal finite element device simulation framework to analyze reset, set and read operations of PCM devices.
more »
« less
- Award ID(s):
- 1711626
- PAR ID:
- 10431631
- Date Published:
- Journal Name:
- arXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We characterized resistance drift in phase change memory devices in the 80 K to 300 K temperature range by performing measurements on 20 nm thick, ∼70–100 nm wide lateral Ge2Sb2Te5(GST) line cells. The cells were amorphized using 1.5–2.5 V pulses with ∼50–100 ns duration leading to ∼0.4–1.1 mA peak reset currents resulting in amorphized lengths between ∼50 and 700 nm. Resistance drift coefficients in the amorphized cells are calculated using constant voltage measurements starting as fast as within a second after amorphization and for 1 h duration. Drift coefficients range between ∼0.02 and 0.1 with significant device-to-device variability and variations during the measurement period. At lower temperatures (higher resistance states) some devices show a complex dynamic behavior, with the resistance repeatedly increasing and decreasing significantly over periods in the order of seconds. These results point to charge trapping and de-trapping events as the cause of resistance drift.more » « less
-
In this work, hafnium zirconium oxide (HZO)-based 100 × 100 nm2 ferroelectric tunnel junction (FTJ) devices were implemented on a 300 mm wafer platform, using a baseline 65 nm CMOS process technology. FTJs consisting of TiN/HZO/TiN were integrated in between metal 1 (M1) and via 1 (V1) layers. Cross-sectional transmission electron microscopy and energy dispersive x-ray spectroscopy analysis confirmed the targeted thickness and composition of the FTJ film stack, while grazing incidence, in-plane x-ray diffraction analysis demonstrated the presence of orthorhombic phase Pca21 responsible for ferroelectric polarization observed in HZO films. Current measurement, as a function of voltage for both up- and down-polarization states, yielded a tunneling electroresistance (TER) ratio of 2.28. The device TER ratio and endurance behavior were further optimized by insertion of thin Al2O3 tunnel barrier layer between the bottom electrode (TiN) and ferroelectric switching layer (HZO) by tuning the band offset between HZO and TiN, facilitating on-state tunneling conduction and creating an additional barrier layer in off-state current conduction path. Investigation of current transport mechanism showed that the current in these FTJ devices is dominated by direct tunneling at low electric field (E < 0.4 MV/cm) and by Fowler–Nordheim (F–N) tunneling at high electric field (E > 0.4 MV/cm). The modified FTJ device stack (TiN/Al2O3/HZO/TiN) demonstrated an enhanced TER ratio of ∼5 (2.2× improvement) and endurance up to 106 switching cycles. Write voltage and pulse width dependent trade-off characteristics between TER ratio and maximum endurance cycles (Nc) were established that enabled optimal balance of FTJ switching metrics. The FTJ memory cells also showed multi-level-cell characteristics, i.e., 2 bits/cell storage capability. Based on full 300 mm wafer statistics, a switching yield of >80% was achieved for fabricated FTJ devices demonstrating robustness of fabrication and programming approach used for FTJ performance optimization. The realization of CMOS-compatible nanoscale FTJ devices on 300 mm wafer platform demonstrates the promising potential of high-volume large-scale industrial implementation of FTJ devices for various nonvolatile memory applications.more » « less
-
We model the current density in a semiconductor based on the drift-diffusion transport of the charge carriers to accurately determine the thermoelectric effects in the bulk material (Thomson effect) and material junctions (Peltier effect). We utilize the model to perform 2-D finite element simulations of mushroom phase change memory cell with a critical dimension of 20 nm using temperature and electric field dependent material parameters and analyze the contributions of symmetric Joule heating and asymmetric thermoelectric heats during reset and set operations. We investigate the effect of altering the direction of current flow by changing the connection point between the cell and the access device and observe that, corresponding change in thermoelectric effects cause significant difference in operation dynamics, temperature distribution profiles, amorphous volume, energy requirement and resistance contrast between reset and set states.more » « less
-
Narrow-channel accumulated body nMOSFET devices with p-type side gates surrounding the active area have been electrically characterized between 100 and 400 K with varied side-gate biasing ( Vside ). The subthreshold slope (SS) and drain induced barrier lowering (DIBL) decrease and threshold voltage ( Vt ) increases linearly with reduced temperature and reduced side-gate bias. Detailed analysis on a 27 nm × 78 nm (width × length) device shows SS decreasing from 115 mV/dec at 400 K to 90 mV/dec at 300 K and down to 36 mV/dec at 100 K, DIBL decreasing by approximately 10 mV/V for each 100 K reduction in operating temperature, and Vt increasing from 0.42 to 0.61 V as the temperature is reduced from 400 to 100 K. Vt can be adjusted from ∼ 0.3 to ∼ 1.1 V with ∼ 0.3 V/V sensitivity by depletion or accumulation of the body of the device using Vside . This high level of tunability allows electronic control of Vt and drive current for variable temperature operation in a wide temperature range with extremely low leakage currents ( < 10 −13 A).more » « less
An official website of the United States government

