skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Micronutrients enhance macronutrient effects in a meta‐analysis of grassland arthropod abundance
Aim: Ongoing alterations to Earth’s biogeochemical cycles (e.g., via fertilization, burning of fossil fuels, and pollution) are expected to impact plants, plant consumers and all subsequent trophic levels. While fertilization experiments often reveal arthropod nutrient limitation by nitrogen and phosphorus via effects on plant nutrient density and biomass, these macronutrients are only two of many nutrients important to arthropod fitness. Micronutrients are key to osmoregulation and enzyme function and can interact synergistically with macronutrients to shape the geography of arthropod abundance. We examine arthropod response to macro- and micronutrient fertilization as a function of nutrient type, application amount, duration, frequency, and plant responses to fertilization with the goal of addressing how ongoing alterations to biogeochemical cycles will shape future grassland food webs.  more » « less
Award ID(s):
1831944 1725683
PAR ID:
10198396
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Global Ecology and Biogeography
ISSN:
1466-822X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nutrient augmentation is one major global change disturbance that could have cascading effects on local plant and microbial communities thus altering biogeochemical properties (Peñuelas et al. 2012). While many studies have investigated fertilization effects on community change and ecosystem processes, less work has been done in dryland ecosystems (Schimel 2010), where nutrient availability often comes as pulses correlated with rain events (Collins et al. 2008). We leveraged an ongoing fertilization experiment (NutNet) at the Sevilleta to answer the question: How does fertilization alter dryland biogeochemical processes, and how does this effect change seasonally? To explore this topic, we specifically measure three important soil hydrolase enzymes, N-acetyl- glycosaminidase (NAG), phosphatase (AP), and β- glucosidase (BG), microbial biomass, and soil nitrogen levels at 5 points along a seasonal gradient within the NutNet plots. 
    more » « less
  2. Abstract Fertilization studies have elucidated basic principles of the role of nutrients in shaping plant communities and demonstrated the potential effects of anthropogenic nutrient deposition. Yet less is known about how these effects are mediated by interacting ecological factors, particularly in nutrient‐poor wetland habitats. In a long‐term experiment in a coastal plain wetland, we examined how fertilization and mowing affected the diversity and composition of a plant community as it reestablished after major disturbance. A drainage ditch in proximity to the experimental plots allowed us also to consider the influence of hydrology and its interactions with nutrient addition. Fertilization decreased species richness, with wetland specialist species showing especially great losses, and several lines of evidence suggest that the effect was mediated by competition for light. Altered hydrology via ditch drainage had effects that were similar to fertilization, with more rapidly draining plots showing lower diversity and decreased abundance of wetland species. Plant community diversity and dynamics were influenced by complex interactions between fertilization, disturbance, and hydrology. The negative effect of fertilization on species richness was initially mitigated by mowing, but in later years was more evident in mowed than in unmowed plots. In the absence of disturbance, nutrient addition increased the rate of transition to primarily woody communities. Similarly, drained plots experienced increased rates of succession compared to wetter plots. Our results suggest that these interactions need to be considered to understand the potential effects of anthropogenic nutrient addition and hydrologic alterations to wetland ecosystems. 
    more » « less
  3. Glass, Jennifer B (Ed.)
    ABSTRACT Microbial communities perform various functions, many of which contribute to ecosystem-level nutrient cycling via decomposition. Factors influencing leaf detrital decomposition are well understood in terrestrial and aquatic ecosystems, but much less is known about arthropod detrital inputs. Here, we sought to infer how differences in arthropod detritus affect microbial-driven decomposition and community function in a carnivorous pitcher plant,Sarracenia purpurea. Using sterile mesh bags filled with different types of sterile arthropod prey, we assessed if prey type influenced the rate of decomposition in pitcher plants over 7 weeks. Additionally, we measured microbial community composition and function, including hydrolytic enzyme activity and carbon substrate use. When comparing decomposition rates, we found that ant and beetle prey with higher exoskeleton content lost less mass compared with fly prey. We observed the highest protease activity in the fly treatment, which had the lowest exoskeleton content. Additionally, we saw differences in the pH of the pitcher fluid, driven by the ant treatment which had the lowest pH. According to our results from 16S rRNA gene metabarcoding, prey treatments with the highest bacterial amplicon sequence variant (ASV) richness (ant and beetle) were associated with prey that lost a lower proportion of mass over the 7 weeks. Overall, arthropod detritus provides unique nutrient sources to decomposer communities, with different prey influencing microbial hydrolytic enzyme activity and composition. IMPORTANCEMicrobial communities play pivotal roles in nutrient cycling via decomposition and nutrient transformation; however, it is often unclear how different substrates influence microbial activity and community composition. Our study highlights how different types of insects influence decomposition and, in turn, microbial composition and function. We use the aquatic pools found in a carnivorous pitcher plant as small, discrete ecosystems that we can manipulate and study independently. We find that some insect prey (flies) breaks down faster than others (beetles or ants) likely because flies contain more things that are easy for microbes to eat and derive essential nutrients from. This is also reflected in higher enzyme activity in the microbes decomposing the flies. Our work bridges a knowledge gap about how different substrates affect microbial decomposition, contributing to the broader understanding of ecosystem function in a nutrient cycling context. 
    more » « less
  4. Biogeochemical cycles constitute Earth’s life support system and distinguish our planet from others in this solar system. Microorganisms are the primary drivers of these cycles. Understanding the controls on marine microbial dynamics and how microbes will respond to environmental change is essential for building and assessing model-based forecasts and generating robust projections of climate change impacts on ocean productivity and biogeochemical cycles. An international community effort has been underway to create a global-scale marine microbial biogeochemistry research program to tackle gaps in this understanding. The BioGeoSCAPES: Ocean Metabolism and Nutrient Cycles on a Changing Planet program will identify and quantify how marine microbes adjust to a changing climate and assess the consequences for global biogeochemical cycles. This article summarizes the ongoing efforts to launch BioGeoSCAPES. 
    more » « less
  5. Abstract Arctic tundra consists of diverse habitats that differ in dominant vegetation, soil moisture regimes, and relative importance of organic vs. inorganic nutrient cycling. The Arctic is also the most rapidly warming global area, with winter warming dominating. This warming is expected to have dramatic effects on tundra carbon and nutrient dynamics. We completed a meta‐analysis of 166 experimental warming study papers to evaluate the hypotheses that warming changes tundra biogeochemical cycles in a habitat‐ and seasonally specific manner and that the carbon (C), nitrogen (N), and phosphorus (P) cycles will be differentially accelerated, leading to decoupling of elemental cycles. We found that nutrient availability and plant leaf stoichiometry responses to experimental warming were variable and overall weak, but that both gross primary productivity and the plant C pool tended to increase with growing season warming. The effects of winter warming on C fluxes did not extend into the growing season. Overall, although warming led to more consistent increases in C fluxes compared to N or P fluxes, evidence for decoupling of biogeochemical cycles is weak and any effect appears limited to heath habitats. However, data on many habitats are too sparse to be able to generalize how warming might decouple biogeochemical cycles, and too few year‐round warming studies exist to ascertain whether the season under which warming occurs alters how ecosystems respond to warming. Coordinated field campaigns are necessary to more robustly document tundra habitat‐specific responses to realistic climate warming scenarios in order to better understand the mechanisms driving this heterogeneity and identify the tundra habitats, communities, and soil pools most susceptible to warming. 
    more » « less