skip to main content


Title: Seasonal transition dates can reveal biases in Arctic sea ice simulations
Abstract. Arctic sea ice experiences a dramatic annual cycle, and seasonal ice loss and growth can be characterized by various metrics: melt onset, breakup, opening, freeze onset, freeze-up, and closing. By evaluating a range of seasonal sea ice metrics, CMIP6 sea ice simulations can be evaluated in more detail than by using traditional metrics alone, such as sea ice area. We show that models capture the observed asymmetry in seasonal sea ice transitions, with spring ice loss taking about 1–2 months longer than fall ice growth. The largest impacts of internal variability are seen in the inflow regions for melt and freeze onset dates, but all metrics show pan-Arctic model spreads exceeding the internal variability range, indicating the contribution of model differences. Through climate model evaluation in the context of both observations and internal variability, we show that biases in seasonal transition dates can compensate for other unrealistic aspects of simulated sea ice. In some models, this leads to September sea ice areas in agreement with observations for the wrong reasons.  more » « less
Award ID(s):
1847398
NSF-PAR ID:
10198403
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Cryosphere
Volume:
14
Issue:
9
ISSN:
1994-0424
Page Range / eLocation ID:
2977 to 2997
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Seasonal transitions in Arctic sea ice, such as the melt onset, have been found to be useful metrics for evaluating sea ice in climate models against observations. However, comparisons of melt onset dates between climate models and satellite observations are indirect. Satellite data products of melt onset rely on observed brightness temperatures, while climate models do not currently simulate brightness temperatures, and must therefore define melt onset with other modeled variables. Here we adapt a passive microwave sea ice satellite simulator, the Arctic Ocean Observation Operator (ARC3O), to produce simulated brightness temperatures that can be used to diagnose the timing of the earliest snowmelt in climate models, as we show here using Community Earth System Model version 2 (CESM2) ocean-ice hindcasts. By producing simulated brightness temperatures and earliest snowmelt estimation dates using CESM2 and ARC3O, we facilitate new and previously impossible comparisons between the model and satellite observations by removing the uncertainty that arises due to definition differences. Direct comparisons between the model and satellite data allow us to identify an early bias across large areas of the Arctic at the beginning of the CESM2 ocean-ice hindcast melt season, as well as improve our understanding of the physical processes underlying seasonal changes in brightness temperatures. In particular, the ARC3O allows us to show that satellite algorithm-based melt onset dates likely occur after significant snowmelt has already taken place. 
    more » « less
  2. Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51% (CESM2). This overestimation has important implications for accurately simulating albedo feedbacks. During the observed freeze-up, weather events, including rain on snow, caused high-frequency variability in snow depth, while pond coverage and depth remained relatively constant until continuous freezing ensued. Both models accurately simulate the abrupt cessation of melt ponds during freeze-up, but the dates of freeze-up differ. MIZMAS accurately simulates the observed date of freeze-up, while CESM2 simulates freeze-up one-to-two weeks earlier. This work demonstrates areas that warrant future observation-model synthesis for improving the representation of sea-ice processes and properties, which can aid accurate simulations of albedo feedbacks in a warming climate. 
    more » « less
  3. Abstract. The annual sea ice freeze–thaw cycle plays a crucial role in theArctic atmosphere—ice–ocean system, regulating the seasonal energy balanceof sea ice and the underlying upper-ocean. Previous studies of the sea icefreeze–thaw cycle were often based on limited accessible in situ or easilyavailable remotely sensed observations of the surface. To better understandthe responses of the sea ice to climate change and its coupling to the upperocean, we combine measurements of the ice surface and bottom usingmultisource data to investigate the temporal and spatial variations in thefreeze–thaw cycle of Arctic sea ice. Observations by 69 sea ice mass balancebuoys (IMBs) collected from 2001 to 2018 revealed that the average ice basalmelt onset in the Beaufort Gyre occurred on 23 May (±6 d),approximately 17 d earlier than the surface melt onset. The average icebasal melt onset in the central Arctic Ocean occurred on 17 June (±9 d), which was comparable with the surface melt onset. This difference wasmainly attributed to the distinct seasonal variations of oceanic heatavailable to sea ice melt between the two regions. The overall average onsetof basal ice growth of the pan Arctic Ocean occurred on 14 November (±21 d), lagging approximately 3 months behind the surface freezeonset. This temporal delay was caused by a combination of cooling the seaice, the ocean mixed layer, and the ocean subsurface layer, as well as thethermal buffering of snow atop the ice. In the Beaufort Gyre region, both(Lagrangian) IMB observations (2001–2018) and (Eulerian) moored upward-looking sonar (ULS) observations (2003–2018) revealed a trend towardsearlier basal melt onset, mainly linked to the earlier warming of thesurface ocean. A trend towards earlier onset of basal ice growth was alsoidentified from the IMB observations (multiyear ice), which we attributed tothe overall reduction of ice thickness. In contrast, a trend towards delayedonset of basal ice growth was identified from the ULS observations, whichwas explained by the fact that the ice cover melted almost entirely by theend of summer in recent years. 
    more » « less
  4. Abstract

    Observations show predictive skill of the minimum sea ice extent (Min SIE) from late winter anomalous offshore ice drift along the Eurasian coastline, leading to local ice thickness anomalies at the onset of the melt season—a signal then amplified by the ice–albedo feedback. We assess whether the observed seasonal predictability of September sea ice extent (Sept SIE) from Fram Strait Ice Area Export (FSIAE; a proxy for Eurasian coastal divergence) is present in global climate model (GCM) large ensembles, namely the CESM2-LE, GISS-E2.1-G, FLOR-LE, CNRM-CM6-1, and CanESM5. All models show distinct periods where winter FSIAE anomalies are negatively correlated with the May sea ice thickness (May SIT) anomalies along the Eurasian coastline, and the following Sept Arctic SIE, as in observations. Counterintuitively, several models show occasional periods where winter FSIAE anomalies are positively correlated with the following Sept SIE anomalies when the mean ice thickness is large, or late in the simulation when the sea ice is thin, and/or when internal variability increases. More important, periods with weak correlation between winter FSIAE and the following Sept SIE dominate, suggesting that summer melt processes generally dominate over late-winter preconditioning and May SIT anomalies. In general, we find that the coupling between the winter FSIAE and ice thickness anomalies along the Eurasian coastline at the onset of the melt season is a ubiquitous feature of GCMs and that the relationship with the following Sept SIE is dependent on the mean Arctic sea ice thickness.

     
    more » « less
  5. Abstract

    Most observed patterns of recent Arctic surface warming and sea ice loss lie outside of unforced internal climate variability. In contrast, human influence on related changes in outgoing longwave radiation has not been assessed. Outgoing longwave radiation captures the flow of thermal energy from the surface through the atmosphere to space, making it an essential indicator of Arctic change. Furthermore, satellites have measured pan-Arctic radiation for two decades while surface temperature observations remain spatially and temporally sparse. Here, two climate model initial-condition large ensembles and satellite observations are used to investigate when and why twenty-first-century Arctic outgoing longwave radiation changes emerge from unforced internal climate variability. Observationally, outgoing longwave radiation changes from 2001 to 2021 are within the range of unforced internal variability for all months except October. The model-predicted timing of Arctic longwave radiation emergence varies throughout the year. Specifically, fall emergence occurs a decade earlier than spring emergence. These large emergence timing differences result from seasonally dependent sea ice loss and surface warming. The atmosphere and clouds then widen these seasonal differences by delaying emergence more in the spring and winter than in the fall. Finally, comparison of the two ensembles shows that more sea ice and a more transparent atmosphere during the melt season led to an earlier emergence of forced longwave radiation changes. Overall, these findings demonstrate that attributing changes in Arctic outgoing longwave radiation to human influence requires understanding the seasonality of both forced change and internal climate variability.

     
    more » « less