skip to main content

Title: Seasonal transition dates can reveal biases in Arctic sea ice simulations
Abstract. Arctic sea ice experiences a dramatic annual cycle, and seasonal ice loss and growth can be characterized by various metrics: melt onset, breakup, opening, freeze onset, freeze-up, and closing. By evaluating a range of seasonal sea ice metrics, CMIP6 sea ice simulations can be evaluated in more detail than by using traditional metrics alone, such as sea ice area. We show that models capture the observed asymmetry in seasonal sea ice transitions, with spring ice loss taking about 1–2 months longer than fall ice growth. The largest impacts of internal variability are seen in the inflow regions for melt and freeze onset dates, but all metrics show pan-Arctic model spreads exceeding the internal variability range, indicating the contribution of model differences. Through climate model evaluation in the context of both observations and internal variability, we show that biases in seasonal transition dates can compensate for other unrealistic aspects of simulated sea ice. In some models, this leads to September sea ice areas in agreement with observations for the wrong reasons.
Authors:
; ;
Award ID(s):
1847398
Publication Date:
NSF-PAR ID:
10198403
Journal Name:
The Cryosphere
Volume:
14
Issue:
9
Page Range or eLocation-ID:
2977 to 2997
ISSN:
1994-0424
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Seasonal transitions in Arctic sea ice, such as the melt onset, have been found to be useful metrics for evaluating sea ice in climate models against observations. However, comparisons of melt onset dates between climate models and satellite observations are indirect. Satellite data products of melt onset rely on observed brightness temperatures, while climate models do not currently simulate brightness temperatures, and must therefore define melt onset with other modeled variables. Here we adapt a passive microwave sea ice satellite simulator, the Arctic Ocean Observation Operator (ARC3O), to produce simulated brightness temperatures that can be used to diagnose the timing of the earliest snowmelt in climate models, as we show here using Community Earth System Model version 2 (CESM2) ocean-ice hindcasts. By producing simulated brightness temperatures and earliest snowmelt estimation dates using CESM2 and ARC3O, we facilitate new and previously impossible comparisons between the model and satellite observations by removing the uncertainty that arises due to definition differences. Direct comparisons between the model and satellite data allow us to identify an early bias across large areas of the Arctic at the beginning of the CESM2 ocean-ice hindcast melt season, as well as improve our understanding of the physical processes underlyingmore »seasonal changes in brightness temperatures. In particular, the ARC3O allows us to show that satellite algorithm-based melt onset dates likely occur after significant snowmelt has already taken place.« less
  2. Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51%more »(CESM2). This overestimation has important implications for accurately simulating albedo feedbacks. During the observed freeze-up, weather events, including rain on snow, caused high-frequency variability in snow depth, while pond coverage and depth remained relatively constant until continuous freezing ensued. Both models accurately simulate the abrupt cessation of melt ponds during freeze-up, but the dates of freeze-up differ. MIZMAS accurately simulates the observed date of freeze-up, while CESM2 simulates freeze-up one-to-two weeks earlier. This work demonstrates areas that warrant future observation-model synthesis for improving the representation of sea-ice processes and properties, which can aid accurate simulations of albedo feedbacks in a warming climate.« less
  3. Abstract. The annual sea ice freeze–thaw cycle plays a crucial role in theArctic atmosphere—ice–ocean system, regulating the seasonal energy balanceof sea ice and the underlying upper-ocean. Previous studies of the sea icefreeze–thaw cycle were often based on limited accessible in situ or easilyavailable remotely sensed observations of the surface. To better understandthe responses of the sea ice to climate change and its coupling to the upperocean, we combine measurements of the ice surface and bottom usingmultisource data to investigate the temporal and spatial variations in thefreeze–thaw cycle of Arctic sea ice. Observations by 69 sea ice mass balancebuoys (IMBs) collected from 2001 to 2018 revealed that the average ice basalmelt onset in the Beaufort Gyre occurred on 23 May (±6 d),approximately 17 d earlier than the surface melt onset. The average icebasal melt onset in the central Arctic Ocean occurred on 17 June (±9 d), which was comparable with the surface melt onset. This difference wasmainly attributed to the distinct seasonal variations of oceanic heatavailable to sea ice melt between the two regions. The overall average onsetof basal ice growth of the pan Arctic Ocean occurred on 14 November (±21 d), lagging approximately 3 months behind the surface freezeonset. This temporal delay was caused by a combinationmore »of cooling the seaice, the ocean mixed layer, and the ocean subsurface layer, as well as thethermal buffering of snow atop the ice. In the Beaufort Gyre region, both(Lagrangian) IMB observations (2001–2018) and (Eulerian) moored upward-looking sonar (ULS) observations (2003–2018) revealed a trend towardsearlier basal melt onset, mainly linked to the earlier warming of thesurface ocean. A trend towards earlier onset of basal ice growth was alsoidentified from the IMB observations (multiyear ice), which we attributed tothe overall reduction of ice thickness. In contrast, a trend towards delayedonset of basal ice growth was identified from the ULS observations, whichwas explained by the fact that the ice cover melted almost entirely by theend of summer in recent years.« less
  4. Abstract. In recent decades, Arctic sea ice has shifted toward ayounger, thinner, seasonal ice regime. Studying and understanding this“new” Arctic will be the focus of a year-long ship campaign beginning inautumn 2019. Lagrangian tracking of sea ice floes in the Community EarthSystem Model Large Ensemble (CESM-LE) during representative “perennial”and “seasonal” time periods allows for understanding of the conditionsthat a floe could experience throughout the calendar year. These modeltracks, put into context a single year of observations, provide guidance onhow observations can optimally shape model development, and how climatemodels could be used in future campaign planning. The modeled floe tracksshow a range of possible trajectories, though a Transpolar Drift trajectoryis most likely. There is also a small but emerging possibility of high-risktracks, including possible melt of the floe before the end of a calendaryear. We find that a Lagrangian approach is essential in order to correctlycompare the seasonal cycle of sea ice conditions between point-basedobservations and a model. Because of high variability in the melt season seaice conditions, we recommend in situ sampling over a large range of ice conditionsfor a more complete understanding of how ice type and surface conditionsaffect the observed processes. We find that sea ice predictability emergesrapidlymore »during the autumn freeze-up and anticipate that process-basedobservations during this period may help elucidate the processes leading tothis change in predictability.« less
  5. The magnitude, spectral composition, and variability of the Arctic sea ice surface albedo are key to understanding and numerically simulating Earth’s shortwave energy budget. Spectral and broadband albedos of Arctic sea ice were spatially and temporally sampled by on-ice observers along individual survey lines throughout the sunlit season (April–September, 2020) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The seasonal evolution of albedo for the MOSAiC year was constructed from spatially averaged broadband albedo values for each line. Specific locations were identified as representative of individual ice surface types, including accumulated dry snow, melting snow, bare and melting ice, melting and refreezing ponded ice, and sediment-laden ice. The area-averaged seasonal progression of total albedo recorded during MOSAiC showed remarkable similarity to that recorded 22 years prior on multiyear sea ice during the Surface Heat Budget of the Arctic Ocean (SHEBA) expedition. In accord with these and other previous field efforts, the spectral albedo of relatively thick, snow-free, melting sea ice shows invariance across location, decade, and ice type. In particular, the albedo of snow-free, melting seasonal ice was indistinguishable from that of snow-free, melting second-year ice, suggesting that the highly scattering surface layer that formsmore »on sea ice during the summer is robust and stabilizing. In contrast, the albedo of ponded ice was observed to be highly variable at visible wavelengths. Notable temporal changes in albedo were documented during melt and freeze onset, formation and deepening of melt ponds, and during melt evolution of sediment-laden ice. While model simulations show considerable agreement with the observed seasonal albedo progression, disparities suggest the need to improve how the albedo of both ponded ice and thin, melting ice are simulated.« less