skip to main content

Title: Compostable, fully biobased foams using PLA and micro cellulose for zero energy buildings
Abstract

Ecological, health and environmental concerns are driving the need for bio-resourced foams for the building industry. In this paper, we examine foams made from polylactic acid (PLA) and micro cellulose fibrils (MCF). To ensure no volatile organic compounds in the foam, supercritical CO2(sc-CO2) physical foaming of melt mixed systems was conducted. Mechanical and thermal conductivity properties were determined and applied to a net zero energy model house. The results showed that MCF had a concentration dependent impact on the foams. First structurally, the presence of MCF led to an initial increase followed by a decrease of open porosity, higher bulk density, lower expansion ratios and cell size. Differential Scanning Calorimetry and Scanning Electron Microscopy revealed that MCF decreased the glass transition of PLA allowing for a decrease in cell wall thickness when MCF was added. The mechanical performance initially increased with MCF and then decreased. This trend was mimicked by thermal insulation which initially improved. Biodegradation tests showed that the presence of cellulose in PLA improved the compostability of the foams. A maximum comparative mineralization of 95% was obtained for the PLA foam with 3 wt.% MCF when expressed as a fractional percentage of the pure cellulose reference. Energy more » simulations run on a model house showed that relative to an insulation of polyurethane, the bio-resourced foams led to no more than a 12% increase in heating and cooling. The energy efficiency of the foams was best at low MCF fractions.

« less
Authors:
; ; ; ;
Award ID(s):
1728096
Publication Date:
NSF-PAR ID:
10198547
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Nanocomposite electrospun fibers were fabricated from poly(lactic) acid (PLA) and needle-like hydroxyapatite nanoparticles made from eggshells. The X-ray diffraction spectrum and the scanning electron micrograph showed that the hydroxyapatite particles are highly crystalline and are needle-liked in shape with diameters between 10 and 20 nm and lengths ranging from 100 to 200 nm. The microstructural, thermal, and mechanical properties of the electrospun fibers were characterized using scanning electron microscope (SEM), thermogravimetric analysis (TGA), dynamic scanning calorimetry (DSC), and tensile testing techniques. The SEM study showed that both pristine and PLA/EnHA fibers surfaces exhibited numerous pores and rough edges suitable for cell attachment. The presence of the rod-liked EnHA particles was found to increase thermal and mechanical properties of PLA fibers relative to pristine PLA fibers. The confocal optical images showed that osteoblast cells were found to attach on dense pristine PLA and PLA/HA-10 wt% fibers after 48 hours of incubation. The stained confocal optical images indicated the secretion of cytoplasmic extension linking adjoining nuclei after 96 hours of incubation. These findings showed that eggshell based nanohydroxyapatite and poly(lactic acid) fibers could be potential scaffold for tissue regeneration.
  2. Abstract

    Hydraulic fracturing of oil and gas wells is a water intensive process. Limited availability, cost and increasing government regulations restraining the use and disposal of fresh water have led to the need for alternative fracturing fluids. Using CO2 foam as a fracturing fluid can drastically reduce the need for water in hydraulic fracturing. We address the addition of polyelectrolyte complex nanoparticles (PECNP) to surfactant solutions to improve foam stability, durability and rheological properties at high foam qualities. Polyelectrolyte pH and polyanion/polycation ratios were varied to minimize particle size and maximize absolute zeta potential of the resulting nanoparticles. Rheological tests were conducted on foam systems of varying surfactant/PECNP ratios and different foam quality to understand the effect of shear on viscosity under simulated reservoir conditions of 40°C and 1300 psi. The same foam systems were tested for stability and durability in a view cell at reservoir conditions. Supercritical CO2 foam generated by surfactant alone resulted in short lived, low viscosity foam because of surfactant drainage from foam lamellae. However, addition of PECNP strengthens the foam film by swelling the film due to increased osmotic pressure and electrostatic forces. Electrostatic interactions reduce dynamic movement of surfactant micelles, thereby stabilizing the foammore »lamellae, which imparts high durability and viscosity to supercritical CO2 foams. From the rheology test results, it was concluded that increasing foam quality and the presence of PECNP resulted in improved viscosity. Also, foam systems with PECNP showed promising results compared with foam generated using surfactant alone in the view cell durability test. The addition of optimized polyelectrolyte nanoparticles to the surfactant can improve viscosity and durability of supercritical CO2 foam during hydraulic fracturing, which can lead to large reductions in water requirements.

    « less
  3. Abstract

    Forcespinning technique was used to fabricate sub-micron size polycaprolactone (PCL) fibers. Forcespinning method uses centrifugal forces for the generation of fibers unlike the electrospinning method which uses electrostatic force. PCL has been extensively used as scaffolds for cell regeneration, substrates for tissue engineering and in drug delivery systems. The aim of this study is to qualitatively analyze the force spun fiber mats and investigate the effect of the spinneret rotational speed on the fiber morphology, thermal and mechanical properties. The extracted fibers were characterized by scanning electron microscopy differential scanning calorimetry, tensile testing and dynamic mechanical analysis. The results showed that higher rotational speeds produced uniform fibers with less number of beads. The crystallinity of the fibers decreased with increase in rotational speeds. The Young’s modulus of the forcespun fibers was found to be in the range of 3.5 to 6 MPa. Storage and loss moduli decreased with the increase in the fiber diameter. The fibers collected at farther distance from spinneret exhibited optimal mechanical properties compared to the fibers collected at shorter distances. This study will aid in extracting fibers with uniform geometries and lower beads to achieve the desired nanofiber drug release properties.

  4. Biopolymer foams manufactured using CO2 enables a novel intersection for economic, environmental, and ecological impact but limited CO2 solubility remains a challenge. PHBV has low solubility in CO2 while PCL has high CO2 solubility. In this paper, PCL is used to blend into PBHV. Both unfoamed and foamed blends are examined. Foaming the binary blends at two depressurization stages with subcritical CO2 as the blowing agent, produced open-cell and closed-cell foams with varying cellular architecture at different PHBV concentrations. Differential Scanning Calorimetry results showed that PHBV had some solubility in PCL and foams developed a PCL rich, PHBV rich and mixed phase. Scanning Electron Microscopy and pcynometry established cell size and density which reflected benefits of PCL presence. Acoustic performance showed limited benefits from foaming but mechanical performance of foams showed a significant impact from PHBV presence in PCL. Thermal performance reflected that foams were affected by the blend thermal conductivity, but the impact was significantly higher in the foams than in the unfoamed blends. The results provide a pathway to multifunctional performance in foams of high performance biopolymers such as PBHV through harnessing the CO2 miscibility of PCL.
  5. Abstract

    We are reporting the effect of thickness on the Seebeck coefficient, electrical conductivity and power factor of Ca3Co4O9thin films grown on single-crystal Sapphire (0001) substrate. Pulsed laser deposition (PLD) technique was employed to deposit Ca3Co4O9films with precisely controlled thickness values ranging from 15 to 75 nm. Structural characterization performed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that the growth of Ca3Co4O9on Sapphire (0001) follows the island growth-mode. It was observed that in-plane grain sizes decrease from 126 to 31 nm as the thickness of the films decreases from 75 to 15 nm. The thermoelectric power measurements showed an overall increase in the value of the Seebeck coefficient as the films’ thickness decreased. The above increase in the Seebeck coefficient was accompanied with a simultaneous decrease in the electrical conductivity of the thinner films due to enhanced scattering of the charge carriers at the grain boundaries. Because of the competing mechanisms of the thickness dependence of Seebeck coefficient and electrical conductivity, the power factor of the films showed a non-monotonous functional dependence on thickness. The films with the intermediate thickness (60 nm) showed the highest power factor (~ 0.27 mW/m-K2at 720 K).