skip to main content

Title: Sources and upstream pathways of the densest overflow water in the Nordic Seas
Abstract

Overflow water from the Nordic Seas comprises the deepest limb of the Atlantic Meridional Overturning Circulation, yet questions remain as to where it is ventilated and how it reaches the Greenland-Scotland Ridge. Here we use historical hydrographic data from 2005-2015, together with satellite altimeter data, to elucidate the source regions of the Denmark Strait and Faroe Bank Channel overflows and the pathways feeding these respective sills. A recently-developed metric is used to calculate how similar two water parcels are, based on potential density and potential spicity. This reveals that the interior of the Greenland Sea gyre is the primary wintertime source of the densest portion of both overflows. After subducting, the water progresses southward along several ridge systems towards the Greenland-Scotland Ridge. Kinematic evidence supports the inferred pathways. Extending the calculation back to the 1980s reveals that the ventilation occurred previously along the periphery of the Greenland Sea gyre.

Authors:
; ; ; ; ;
Award ID(s):
1756361 1558742
Publication Date:
NSF-PAR ID:
10198938
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The Arctic Mediterranean (AM) is the collective name forthe Arctic Ocean, the Nordic Seas, and their adjacent shelf seas. Water enters into thisregion through the Bering Strait (Pacific inflow) and through the passages across theGreenland–Scotland Ridge (Atlantic inflow) and is modified within the AM. The modifiedwaters leave the AM in several flow branches which are grouped into two differentcategories: (1) overflow of dense water through the deep passages across theGreenland–Scotland Ridge, and (2) outflow of light water – here termed surface outflow– on both sides of Greenland. These exchanges transport heat and salt into and out ofthe AM and are important for conditions in the AM. They are also part of the global oceancirculation and climate system. Attempts to quantify the transports by various methodshave been made for many years, but only recently the observational coverage has becomesufficiently complete to allow an integrated assessment of the AM exchanges based solelyon observations. In this study, we focus on the transport of water and have collecteddata on volume transport for as many AM-exchange branches as possible between 1993 and2015. The total AM import (oceanic inflows plusfreshwater) is found to be 9.1 Sv (sverdrup,1 Sv =106 m3 s−1) with an estimated uncertainty of 0.7 Sv and hasthe amplitudemore »of the seasonal variation close to 1 Sv and maximum import in October.Roughly one-third of the imported water leaves the AM as surface outflow with theremaining two-thirds leaving as overflow. The overflow water is mainly produced frommodified Atlantic inflow and around 70 % of the total Atlantic inflow is convertedinto overflow, indicating a strong coupling between these two exchanges. The surfaceoutflow is fed from the Pacific inflow and freshwater (runoff and precipitation), but isstill approximately two-thirds of modified Atlantic water. For the inflowbranches and the two main overflow branches (Denmark Strait and Faroe Bank Channel),systematic monitoring of volume transport has been established since the mid-1990s, andthis enables us to estimate trends for the AM exchanges as a whole. At the 95 %confidence level, only the inflow of Pacific water through the Bering Strait showed astatistically significant trend, which was positive. Both the total AM inflow and thecombined transport of the two main overflow branches also showed trends consistent withstrengthening, but they were not statistically significant. They do suggest, however,that any significant weakening of these flows during the last two decades is unlikely andthe overall message is that the AM exchanges remained remarkably stable in the periodfrom the mid-1990s to the mid-2010s. The overflows are the densest source water for thedeep limb of the North Atlantic part of the meridional overturning circulation (AMOC),and this conclusion argues that the reported weakening of the AMOC was not due tooverflow weakening or reduced overturning in the AM. Although the combined data set hasmade it possible to establish a consistent budget for the AM exchanges, the observationalcoverage for some of the branches is limited, which introduces considerable uncertainty.This lack of coverage is especially extreme for the surface outflow through the DenmarkStrait, the overflow across the Iceland–Faroe Ridge, and the inflow over the Scottishshelf. We recommend that more effort is put into observing these flows as well asmaintaining the monitoring systems established for the other exchange branches.

    « less
  2. Using vessel-mounted acoustic Doppler current profiler data from four different routes between Scotland, Iceland and Greenland, we map out the mean flow of water in the top 400 m of the northeastern North Atlantic. The poleward transport east of the Reykjanes Ridge (RR) decreases from 8.5 to 10 Sv (1 Sverdrup 106 m3 s1) at 59.58N to 618N to 6 Sv crossing the IcelandFaroesScotland Ridge. The two longest 1200 km transport integrals have 1.40.94 Sv uncertainty, respectively. The overall decrease in transport can in large measure be accounted for by a 1.5 Sv flow across the RR into the Irminger Sea north of 59.58N and by a 0.5 Sv overflow of dense water along the IcelandFaroes Ridge. A remaining 0.5 Sv flux divergence is at the edge of detectability, but if real could be accounted for through wintertime convection to 400 m and densification of upper ocean water. The topography of the Iceland Basin and the banks west of Scotland play a fundamental role in controlling flow pathways towards and past Iceland, the Faroes and Scotland. Most water flows north unimpeded through the Iceland Basin, some in the centre of the basin along the Maury Channel, and some along Hattonmore »Bank, turning east along the northern slopes of George Bligh Bank, Lousy Bank and Bill Bailey’s Bank, whereupon the flow splits with 3 Sv turning northwest towards the IcelandFaroes Ridge and the remainder continuing east towards and north of the Wyville-Thomson Ridge (WTR) to the Scotland slope thereby increasing the Slope Current transport from 1.5 Sv south of the WTR to 3.5 Sv in the FaroesShetland Channel« less
  3. The Atlantic meridional overturning circulation and associated poleward heat transport are balanced by northern heat loss to the atmosphere and corresponding water-mass transformation. The circulation of northward-flowing Atlantic Water at the surface and returning overflow water at depth is particularly manifested—and observed—at the Greenland–Scotland Ridge where the water masses are guided through narrow straits. There is, however, a rich variability in the exchange of water masses across the ridge on all time scales. Focusing on seasonal and interannual time scales, and particularly the gateways of the Denmark Strait and between the Faroe Islands and Shetland, we specifically assess to what extent the exchanges of water masses across the Greenland–Scotland Ridge relate to wind forcing. On seasonal time scales, the variance explained of the observed exchanges can largely be related to large-scale wind patterns, and a conceptual model shows how this wind forcing can manifest via a barotropic, cyclonic circulation. On interannual time scales, the wind stress impact is less direct as baroclinic mechanisms gain importance and observations indicate a shift in the overflows from being more barotropically to more baroclinically forced during the observation period. Overall, the observed Greenland–Scotland Ridge exchanges reflect a horizontal (cyclonic) circulation on seasonal time scales,more »while the interannual variability more represents an overturning circulation.« less
  4. Abstract The hydrography of the Nordic seas, a critical site for deep convective mixing, is controlled by various processes. On one hand, Arctic Ocean exports are thought to freshen the North Atlantic Ocean and the Nordic seas, as in the Great Salinity Anomalies (GSAs) of the 1970s–1990s. On the other hand, the salinity of the Nordic seas covaries with that of the Atlantic inflow across the Greenland–Scotland Ridge, leaving an uncertain role for Arctic Ocean exports. In this study, multidecadal time series (1950–2018) of the Nordic seas hydrography, Subarctic Front (SAF) in the North Atlantic Ocean [separating the water masses of the relatively cool, fresh Subpolar Gyre (SPG) from the warm, saline Subtropical Gyre (STG)], and atmospheric forcing are examined and suggest a unified view. The Nordic seas freshwater content is shown to covary on decadal time scales with the position of the SAF. When the SPG is strong, the SAF shifts eastward of its mean position, increasing the contribution of subpolar relative to subtropical source water to the Atlantic inflow, and vice versa. This suggests that Arctic Ocean fluxes primarily influence the hydrography of the Nordic seas via indirect means (i.e., by freshening the SPG). Case studies of twomore »years with anomalous NAO conditions illustrate how North Atlantic Ocean dynamics relate to the position of the SAF (as indicated by hydrographic properties and stratification changes in the upper water column), and therefore to the properties of the Atlantic inflow and Nordic seas.« less
  5. Neogene ocean temperatures are characterized by sustained warmth during the mid-Miocene Climatic Optimum followed by gradual cooling through the late Miocene culminating in Northern Hemisphere glaciation in the early Pleistocene. While the magnitude of sea surface temperature (SST) cooling is enhanced at higher latitudes, existing records suggest that the timing is nearly synchronous across the world's oceans. However, the Nordic Seas, north of the Greenland-Scotland Ridge (GSR), experienced rapid cooling steps (14.5-14 Ma, 12.5-12 Ma, 8-6 Ma) that are out of sync with the global SST cooling trend. Here we present a new alkenone paleo-SST record from Ocean Drilling Program (ODP) site 985 in the western Norwegian Sea (66°56' N, 6°27' W) and investigate the relationships between rapid SST change, depth of the GSR, ocean circulation, and deep-water formation using proxy and model data. We find significant (p < 0.01) inverse relationships between the depth of the GSR and SSTs at ODP sites north of the ridge (985 and 907), positive relationships between GSR depth and the SST gradient across the ridge, and inverse relationships between deep water production and SST at ODP sites 985 and 907. In sum, these observations suggest that during global Miocene cooling, intervals of GSRmore »deepening allowed for increased sea water exchange and an invigoration of deep-water production in the North Atlantic. We posit that enhanced surficial cyclonic flow in the Nordic Seas and a strengthened East Greenland Current caused rapid cooling in the western Nordic Seas. This cooling is consistent with Pliocene coupled climate model runs with altered tectonic boundary conditions simulating a deeper GSR, implying that this SST response to changes to GSR depth may be an important mechanism in high latitude Neogene climate. Furthermore, a strong linear relationship (r2 = 0.84) between ODP 985 SST and global deep ocean δ13C suggests that ocean circulation responses to tectonically forced variability in the GSR may have had an important impact on the Neogene carbon cycle.« less