skip to main content


Title: A Top-to-Bottom Luminescence-Based Chronology for the Post-LGM Regression of a Great Basin Pluvial Lake
We applied luminescence dating to a suite of shorelines constructed by pluvial Lake Clover in northeastern Nevada, USA during the last glacial cycle. At its maximum extent, the lake covered 740 km2 with a mean depth of 16 m and a water volume of 13 km3. In the north-central sector of the lake basin, 10 obvious beach ridges extend from the highstand to the lowest shoreline over a horizontal distance of ~1.5 km, representing a lake area decrease of 35%. These ridges are primarily composed of sandy gravel and rise ~1.0 m above the alluvial fan surface on which they are superposed. Single grain luminescence dating of K-feldspar using the pIRIR SAR (post-infrared infrared single-aliquot regenerative dose) protocol, corroborated by SAR dating of quartz, indicates that the highstand shoreline was constructed ca. 16–17 ka during Heinrich Stadial I (Greenland Stadial 2, GS-2), matching 14C age control for this shoreline elsewhere in the basin. The lake regressed rapidly during the Bølling/Allerød (GI-1), before the rate of regression slowed during the Younger Dryas interval (GS-1). The lowest shoreline was constructed ca. 10 ka. Persistence of Lake Clover into the early Holocene may reflect enhanced monsoonal precipitation driven by the summer insolation maximum.  more » « less
Award ID(s):
1702975
NSF-PAR ID:
10199004
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Quaternary
Volume:
3
Issue:
2
ISSN:
2571-550X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Beach ridges constructed by pluvial Lake Clover in Elko County, Nevada during the Late Pleistocene were investigated with ground-penetrating radar (GPR). The primary objective was to document the internal architecture of these shorelines and to evaluate whether they were constructed during lake rise or fall. GPR data were collected with a ground-coupled 400-Mhz antenna and SIR-3000 controller. To constrain the morphology of the ridges, detailed topographic surveys were collected with a Topcon GTS-235W total station referenced to a second class 0 vertical survey point. GPR transects crossed the beach ridge built by Lake Clover at its highstand of 1725 m, along with seven other ridges down to the lowest beach at 1712 m. An average dielectric permittivity of 5.0, typical for dry sand and gravel, was calculated from GPR surveys in the vicinity of hand-excavations that encountered prominent stratigraphic discontinuities at known depths. Assuming this value, consistent radar signals were returned to a depth of ~3 m. Beach ridges are resolvable as ~90 to 150-cm thick stratified packages of gravelly sand overlying a prominent lakeward-dipping reflector, interpreted as the pre-lake land surface. Many ridges contain a package of sediment resembling a buried berm at their core, typically offset in a landward direction from the geomorphic crest of the beach ridge. Sequences of lakeward-dipping reflectors are resolvable beneath the beach face of all ridges. No evidence was observed to indicate that beach ridges were submerged by higher water levels after their formation. Instead, the GPR data are consistent with a model of sequential ridge formation during a monotonic lake regression. 
    more » « less
  2. Abstract

    The climate of the southwestern North America has experienced profound changes between wet and dry phases over the past 200 Kyr. To better constrain the timing, magnitude, and paleoenvironmental impacts of these changes in hydroclimate, we conducted a multiproxy biomarker study from samples collected from a new 77 m sediment core (SLAPP‐SRLS17) drilled in Searles Lake, California. Here, we use biomarkers and pollen to reconstruct vegetation, lake conditions, and climate. We find that δD values of long chainn‐alkanes are dominated by glacial to interglacial changes that match nearby Devils Hole calcite δ18O variability, suggesting both archives predominantly reflect precipitation isotopes. However, precipitation isotopes do not simply covary with evidence for wet‐dry changes in vegetation and lake conditions, indicating a partial disconnect between large scale atmospheric circulation tracked by precipitation isotopes and landscape moisture availability. Increased crenarchaeol production and decreased evidence for methane cycling reveal a 10 Kyr interval of a fresh, productive, and well‐mixed lake during Termination II, corroborating evidence for a paleolake highstand from shorelines and spillover deposits in downstream Panamint Basin and Death Valley during the end of the penultimate (Tahoe) glacial (140–130 ka). At the same time brGDGTs yield the lowest temperature estimates (mean months above freezing = 9°C ± 3°C) of the 200 Kyr record. These limnological conditions are not replicated elsewhere in the 200 Kyr record, suggesting that the Heinrich stadial 11 highstand was wetter than the last glacial maximum and Heinrich 1 (18–15 ka).

     
    more » « less
  3. Abstract The fluvial geomorphology and stratigraphy on the middle Snake River at Bancroft Springs, Idaho, provide evidence for numerous episodes of Snake River aggradation and incision since the Bonneville Flood at ca. 18 ka. A suite of seven terraces ranging from 20–1 m above modern bankfull elevation records multiple cut-and-fill cycles during the latest Pleistocene and Holocene in response to local base-level controls, variations in sediment supply, and hydroclimate change. Radiocarbon and luminescence dating show that the ages of fluvial aggradation generally coincide with increased sediment supply and likely wetter hydroclimate during onset of the Younger Dryas stadial (ca. 13.2 ka), deglaciation and termination of the Younger Dryas stadial (ca. 11.3 ka), Early Holocene cooling (ca. 8.8 ka), and Neoglacial (ca. 4.5, 2.9, 1.1 ka). Six intervening periods of incision and channel stability may also reflect either reduced sediment supply, drier hydroclimate, or both. The terrace chronology can be correlated to a variety of local and regional paleoclimate proxy records and corresponds well with periods of continental- and global-scale rapid climate change during the Holocene. The fluvial record demonstrates the geomorphic response and sensitivity of large river systems to changes in hydroclimate variability, which has important implications for inferring paleoenvironmental conditions in the region. 
    more » « less
  4. Glacial and periglacial sediments and landforms record the chronology of glaciation and amount of Pleistocene erosion during colder periods that added substantially to global sediment budgets and contributed to the global CO2 cycle. The now-drained glacial Lake Devlin, dammed in a Front Range tributary valley by a glacier in the North Branch of Boulder Creek (Colorado, USA) preserves an important sedimentary archive of the ca. 32−14 ka Pinedale glaciation, recording both paleoclimate information and an integrated measure of glacial and periglacial erosion rates over a full glacial cycle. Despite rapid erosion of fine-grained deposits after the lake drained, most sediment generated during Pinedale time remains as legacy deposits in the catchment. Geomorphic evidence and dating of glaciolacustrine sediment from surface exposures demonstrate that the ca. 30 ka Pinedale glacial advance was nearly as extensive as the local Late Glacial Maximum at ca. 20 ka. Sedimentary archives dated by 14C, optically stimulated luminescence, and cosmogenic nuclides extend earlier studies (Madole et al., 1973) of pollen and magnetic susceptibility (MS) in cores from the glaciolacustrine deposits of Lake Devlin and of Pinedale climate. Records suggest short-term warming and biotic change at ca. 15 ka after ∼14 kyr of cold, dry conditions punctuated by MS peaks at ca. 26.5 ka, 20 ka, and 16.5 ka. Lake Devlin drained catastrophically after ca. 14 ka, millennia after ice had retreated upvalley from the lateral moraine that dammed the lake. Sediment production during the Pinedale was equivalent to a periglacial and glacial erosion rate of ∼70 mm kyr−1, several times higher than long-term rates in the adjacent Front Range, but much lower than rates measured where modern glaciers are eroding weak bedrock in zones of rapid rock uplift, such as SSE Alaska, USA. Data from the Lake Devlin basin contribute to contemporary discussions of how glacial erosion influences the global CO2 cycle.

     
    more » « less
  5. Abstract

    Climate is currently warming due to anthropogenic impact on the Earth’s atmosphere. To better understand the processes and feedbacks within the climate system that underlie this accelerating warming trend, it is useful to examine past periods of abrupt climate change that were driven by natural forcings. Glaciers provide an excellent natural laboratory for reconstructing the climate of the past as they respond sensitively to climate oscillations. Therefore, we study glacier systems and their behavior during the transition from colder to warmer climate phases, focusing on the period between 15 and 10 ka. Using a combination of geomorphological mapping and beryllium-10 surface exposure dating, we reconstruct ice extents in two glaciated valleys of the Silvretta Massif in the Austrian Alps. The mountain glacier record shows that general deglaciation after the Last Glacial Maximum (LGM) was repeatedly interrupted by glacier stabilization or readvance, perhaps during the Oldest Dryas to Bølling transition (landform age: 14.4 ± 1.0 ka) and certainly during the Younger Dryas (YD; 12.9–11.7 ka) and the Early Holocene (EH; 12–10 ka). The oldest landform age indicates a lateral ice margin that postdates the ‘Gschnitz’ stadial (ca. 17–16 ka) and predates the YD. It shows that local inner-alpine glaciers were more extensive until the onset of the Bølling warm phase (ca. 14.6 ka), or possibly even into the Bølling than during the subsequent YD. The second age group, ca. 80 m below the (pre-)Bølling ice margin, indicates glacier extents during the YD cold phase and captures the spatial and temporal fine structure of glacier retreat during this period. The ice surface lowered approximately 50–60 m through the YD, which is indicative of milder climate conditions at the end of the YD compared to its beginning. Finally, the third age group falls into a period of more substantial warming, the YD–EH transition, and shows discontinuous glacier retreat during the glacial to interglacial transition. The new geochronologies synthesized with pre-existing moraine records from the Silvretta Massif evidence multiple cold phases that punctuated the general post-LGM warming trend and illustrate the sensitive response of Silvretta glaciers to abrupt climate oscillations in the past.

     
    more » « less