Alluvial rivers aggrade, incise, and adjust their sediment‐transport rates in response to changing sediment and water supply. Fluvial landforms, such as river terraces, and downstream stratigraphic archives may therefore record information about past environmental change. Using a physically based model describing sediment transport and long‐profile evolution of alluvial rivers, we explore how their responses to environmental change depend on distance downstream, forcing timescales, and whether sediment or water supply is varied. We show that amplitudes of aggradation and incision, and therefore the likelihood of terrace formation, are greater upstream and in shorter and/or wetter catchments. Aggradation and incision, and therefore terrace ages, may also lag behind environmental change. How sediment‐transport rates evolve depends strongly on whether water or sediment supply is varied. Diverse responses to environmental change could arise in natural alluvial valleys, controlled by their geometry and hydrology, with important implications for paleo‐environmental interpretations of fluvial archives.
- Award ID(s):
- 1735891
- NSF-PAR ID:
- 10447827
- Date Published:
- Journal Name:
- Quaternary Research
- Volume:
- 113
- ISSN:
- 0033-5894
- Page Range / eLocation ID:
- 29 to 51
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Climate is currently warming due to anthropogenic impact on the Earth’s atmosphere. To better understand the processes and feedbacks within the climate system that underlie this accelerating warming trend, it is useful to examine past periods of abrupt climate change that were driven by natural forcings. Glaciers provide an excellent natural laboratory for reconstructing the climate of the past as they respond sensitively to climate oscillations. Therefore, we study glacier systems and their behavior during the transition from colder to warmer climate phases, focusing on the period between 15 and 10 ka. Using a combination of geomorphological mapping and beryllium-10 surface exposure dating, we reconstruct ice extents in two glaciated valleys of the Silvretta Massif in the Austrian Alps. The mountain glacier record shows that general deglaciation after the Last Glacial Maximum (LGM) was repeatedly interrupted by glacier stabilization or readvance, perhaps during the Oldest Dryas to Bølling transition (landform age: 14.4 ± 1.0 ka) and certainly during the Younger Dryas (YD; 12.9–11.7 ka) and the Early Holocene (EH; 12–10 ka). The oldest landform age indicates a lateral ice margin that postdates the ‘Gschnitz’ stadial (ca. 17–16 ka) and predates the YD. It shows that local inner-alpine glaciers were more extensive until the onset of the Bølling warm phase (ca. 14.6 ka), or possibly even into the Bølling than during the subsequent YD. The second age group, ca. 80 m below the (pre-)Bølling ice margin, indicates glacier extents during the YD cold phase and captures the spatial and temporal fine structure of glacier retreat during this period. The ice surface lowered approximately 50–60 m through the YD, which is indicative of milder climate conditions at the end of the YD compared to its beginning. Finally, the third age group falls into a period of more substantial warming, the YD–EH transition, and shows discontinuous glacier retreat during the glacial to interglacial transition. The new geochronologies synthesized with pre-existing moraine records from the Silvretta Massif evidence multiple cold phases that punctuated the general post-LGM warming trend and illustrate the sensitive response of Silvretta glaciers to abrupt climate oscillations in the past.
-
We applied luminescence dating to a suite of shorelines constructed by pluvial Lake Clover in northeastern Nevada, USA during the last glacial cycle. At its maximum extent, the lake covered 740 km2 with a mean depth of 16 m and a water volume of 13 km3. In the north-central sector of the lake basin, 10 obvious beach ridges extend from the highstand to the lowest shoreline over a horizontal distance of ~1.5 km, representing a lake area decrease of 35%. These ridges are primarily composed of sandy gravel and rise ~1.0 m above the alluvial fan surface on which they are superposed. Single grain luminescence dating of K-feldspar using the pIRIR SAR (post-infrared infrared single-aliquot regenerative dose) protocol, corroborated by SAR dating of quartz, indicates that the highstand shoreline was constructed ca. 16–17 ka during Heinrich Stadial I (Greenland Stadial 2, GS-2), matching 14C age control for this shoreline elsewhere in the basin. The lake regressed rapidly during the Bølling/Allerød (GI-1), before the rate of regression slowed during the Younger Dryas interval (GS-1). The lowest shoreline was constructed ca. 10 ka. Persistence of Lake Clover into the early Holocene may reflect enhanced monsoonal precipitation driven by the summer insolation maximum.more » « less
-
Abstract Bedrock rivers are the pacesetters of landscape evolution in uplifting fluvial landscapes. Water discharge variability and sediment transport are important factors influencing bedrock river processes. However, little work has focused on the sensitivity of hillslope sediment supply to precipitation events and its implications on river evolution in tectonically active landscapes. We model the temporal variability of water discharge and the sensitivity of sediment supply to precipitation events as rivers evolve to equilibrium over 106model years. We explore how coupling sediment supply sensitivity with discharge variability influences rates and timing of river incision across climate regimes. We find that sediment supply sensitivity strongly impacts which water discharge events are the most important in driving river incision and modulates channel morphology. High sediment supply sensitivity focuses sediment delivery into the largest river discharge events, decreasing rates of bedrock incision during floods by orders of magnitude as rivers are inundated with new sediment that buries bedrock. The results show that the use of river incision models in which incision rates increase monotonically with increasing river discharge may not accurately capture bedrock river dynamics in all landscapes, particularly in steep landslide prone landscapes. From our modeling results, we hypothesize the presence of an upper discharge threshold for river incision at which storms transition from being incisional to depositional. Our work illustrates that sediment supply sensitivity must be accounted for to predict river evolution in dynamic landscapes. Our results have important implications for interpreting and predicting climatic and tectonic controls on landscape morphology and evolution.
-
Abstract Plants influence river channel topography, but our understanding of the interaction among plants, flow, and sediment is limited, especially when sediment supply is variable. Using laboratory experiments in a recirculating flume with live seedlings in a mobile sand bed, we demonstrate how varying the balance between sediment supply and transport capacity shifts the relationship between plants and bar‐surface topography. Each experimental trial contrasted two sediment conditions, in which initially supply was maintained in equilibrium with transport via sediment recirculation, followed by sediment deficit, in which transport capacity exceeded supply, which was set to zero. For both sediment balances, the topographic response was sensitive to plant size, with larger plants inducing greater aggradation relative to a baseline condition. During sediment equilibrium, the positive relationship between plant size and topographic change also depended on species morphology (multi‐stemmed shrubs versus single‐stemmed plants). Plant morphology effects disappeared when the sediment balance shifted to a deficit, but the presence of plants had a greater impact on the magnitude of change compared to the topographic response under sediment equilibrium. Our results suggest that the interactions among sediment supply, plants, and topography may be strongest on rivers with a balance in sediment supply and transport capacity. Because of the large variability in fluvial sediment supply resulting from natural and anthropogenic influences, these interactions will differ spatially (e.g. longitudinally through a watershed) and at different temporal scales, from single flood events to longer time periods. Copyright © 2016 John Wiley & Sons, Ltd.