Density functional theory studies show that the lowest energy C 4 F 8 Fe(CO) 4 structure is not the very stable experimentally known ferracyclopentane isomer (CF 2 CF 2 CF 2 CF 2 )Fe(CO) 4 obtained from Fe(CO) 12 and tetrafluoroethylene. Instead isomeric (perfluoroolefin)Fe(CO) 4 structures derived from perfluoro-2-butene, perfluoro-1-butene, and perfluoro-2-methylpropene are significantly lower energy structures by up to ∼17 kcal mol −1 . However, the activation energies for the required fluorine shifts from one carbon to an adjacent carbon atom to form these (perfluoroolefin)Fe(CO) 4 complexes from tetrafluoroethylene are very high ( e.g. , ∼70 kcal mol −1 ). Therefore the ferracyclopentane isomer (CF 2 CF 2 CF 2 CF 2 )Fe(CO) 4 , which does not require a fluorine shift to form from Fe 3 (CO) 12 and tetrafluoroethylene, is the kinetically favored product. The lowest energy structures of the binuclear (C 4 F 8 ) 2 Fe 2 (CO) n ( n = 7, 6) derivatives have bridging perfluorocarbene ligands and terminal perfluoroolefin ligands.
more »
« less
Perfluoroolefin complexes versus perfluorometallacycles and perfluorocarbene complexes in cyclopentadienylcobalt chemistry
Fluorocarbons have been shown experimentally by Baker and coworkers to combine with the cyclopentadienylcobalt (CpCo) moiety to form fluoroolefin and fluorocarbene complexes as well as fluorinated cobaltacyclic rings. In this connection density functional theory (DFT) studies on the cyclopentadienylcobalt fluorocarbon complexes CpCo(L)(C n F 2n ) (L = CO, PMe 3 ; n = 3 and 4) indicate structures with perfluoroolefin ligands to be the lowest energy structures followed by perfluorometallacycle structures and finally by structures with perfluorocarbene ligands. Thus, for the CpCo(L)(C 3 F 6 ) (L = CO, PMe 3 ) complexes, the perfluoropropene structure has the lowest energy, followed by the perfluorocobaltacyclobutane structure and the perfluoroisopropylidene structure less stable by 8 to 11 kcal mol −1 , and the highest energy perfluoropropylidene structure less stable by more than 12 kcal mol −1 . For the two metal carbene structures Cp(L)CoC(CF 3 ) 2 and Cp(L)CoCF(C 2 F 5 ), the former is more stable than the latter, even though the latter has Fischer carbene character. For the CpCo(L)(C 4 F 8 ) (L = CO, PMe 3 ) complexes, the perfluoroolefin complex structures have the lowest energies, followed by the perfluorometallacycle structures at 10 to 20 kcal mol −1 , and the structures with perfluorocarbene ligands at yet higher energies more than 20 kcal mol −1 above the lowest energy structure. This is consistent with the experimentally observed isomerization of the perfluorinated cobaltacyclobutane complexes CpCo(PPh 2 Me)(–CFR–CF 2 –CF 2 –) (R = F, CF 3 ) to the perfluoroolefin complexes CpCo(PPh 2 Me)(RCFCF 2 ) in the presence of catalytic quantities of HN(SO 2 CF 3 ) 2 . Further refinement of the relative energies by the state-of-the-art DLPNO-CCSD(T) method gives results essentially consistent with the DFT results summarized above.
more »
« less
- Award ID(s):
- 1661604
- PAR ID:
- 10199057
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 22
- Issue:
- 14
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 7616 to 7624
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synthetic control of the influence of steric and electronic factors on the ultrafast (picosecond) isomerization of penta-coordinate ruthenium dithietene complexes (Ru((CF 3 ) 2 C 2 S 2 )(CO)(L) 2 , where L = a monodentate phosphine ligand) is reported. Seven new ruthenium dithietene complexes were prepared and characterized by single crystal X-ray diffraction. The complexes are all square pyramidal and differ only in the axial vs. equatorial coordination of the carbonyl ligand. Fourier Transform Infrared (FTIR) spectroscopy was used to study the ν (CO) bandshapes of the complexes in solution, and these reveal rapid exchange between two or three isomers of each complex. Isomerization is proposed to follow a Berry psuedorotation-like mechanism where a metastable, trigonal bipyramidal (TBP) intermediate is observed spectroscopically. Electronic tuning of the phosphine ligands L = PPh 3 , P(( p -Me)Ph) 3 , (( p -Cl)Ph) 3 , at constant cone angle is found to have little effect on the kinetics or thermodynamic stabilities of the axial, equatorial and TBP isomers of the differently substituted complexes. Steric tuning of the phosphine ligands over a range of phosphine cone angles (135 < θ < 165°) has a profound impact on the isomerization process, and in the limit of greatest steric bulk, the axial isomer is not observable. Temperature dependence of the FTIR spectra was used to obtain the relative thermodynamic stabilities of the different isomers of each of the seven ruthenium dithietene complexes. This study details how ligand steric effects can be used to direct the solution state dynamics on the picosecond time scale of discrete isomers energetically separated by <2.2 kcal mol −1 . This work provides the most detailed description to date of ultrafast isomerization in the ground states of transition metal complexes.more » « less
-
The correlation consistent Composite Approach for transition metals (ccCA-TM) and density functional theory (DFT) computations have been applied to investigate the fluxional mechanisms of cyclooctatetraene tricarbonyl chromium ((COT)Cr(CO)3) and 1,3,5,7-tetramethylcyclooctatetraene tricarbonyl chromium, molybdenum, and tungsten ((TMCOT)M(CO)3 (M = Cr, Mo, and W)) complexes. The geometries of (COT)Cr(CO)3 were fully characterized with the PBEPBE, PBE0, B3LYP, and B97-1 functionals with various basis set/ECP combinations, while all investigated (TMCOT)M(CO)3 complexes were fully characterized with the PBEPBE, PBE0, and B3LYP methods. The energetics of the fluxional dynamics of (COT)Cr(CO)3 were examined using the correlation consistent Composite Approach for transition metals (ccCA-TM) to provide reliable energy benchmarks for corresponding DFT results. The PBE0/BS1 results are in semiquantitative agreement with the ccCA-TM results. Various transition states were identified for the fluxional processes of (COT)Cr(CO)3. The PBEPBE/BS1 energetics indicate that the 1,2-shift is the lowest energy fluxional process, while the B3LYP/BS1 energetics (where BS1 = H, C, O: 6-31G(d′); M: mod-LANL2DZ(f)-ECP) indicate the 1,3-shift having a lower electronic energy of activation than the 1,2-shift by 2.9 kcal mol−1. Notably, PBE0/BS1 describes the (CO)3 rotation to be the lowest energy process, followed by the 1,3-shift. Six transition states have been identified in the fluxional processes of each of the (TMCOT)M(CO)3 complexes (except for (TMCOT)W(CO)3), two of which are 1,2-shift transition states. The lowest-energy fluxional process of each (TMCOT)M(CO)3 complex (computed with the PBE0 functional) has a ΔG‡ of 12.6, 12.8, and 13.2 kcal mol−1 for Cr, Mo, and W complexes, respectively. Good agreement was observed between the experimental and computed 1H-NMR and 13C-NMR chemical shifts for (TMCOT)Cr(CO)3 and (TMCOT)Mo(CO)3 at three different temperature regimes, with coalescence of chemically equivalent groups at higher temperatures.more » « less
-
Structural characterization of the complex [B(β-pinane) 3 ] (1) reveals non-covalent H⋯H contacts that are consistent with the generation of London dispersion energies involving the β-pinane ligand frameworks. The homolytic fragmentations of 1 , and camphane and sabinane analogues ([B(camphane) 3 ] (2) and [B(sabinane) 3 ] (3)) were studied computationally. Isodesmic exchange results showed that London dispersion interactions are highly dependent on the terpene's stereochemistry, with the β-pinane framework providing the greatest dispersion free energy (Δ G = −7.9 kcal mol −1 ) with Grimme's dispersion correction (D3BJ) employed. PMe 3 was used to coordinate to [B(β-pinane) 3 ], giving the complex [Me 3 P–B(β-pinane) 3 ] ( 4 ), which displayed a dynamic coordination equilibrium in solution. The association process was found to be slightly endergonic at 302 K (Δ G = +0.29 kcal mol −1 ).more » « less
-
[Cp*Rh] complexes (Cp* = pentamethylcyclopentadienyl) supported by bidentate chelating ligands are a useful class of compounds for studies of redox chemistry and catalysis. Here, we show that the bis(2-pyridyl)methane ligand, also known as dipyridylmethane or dpma, can support [Cp*Rh] complexes in the formally + iii and + ii rhodium oxidation states. Specifically, two new rhodium complexes ([Cp*Rh(dpma)(L)] n+ , L = Cl − , CH 3 CN) have been isolated and structurally characterized, and the properties of the complexes have been compared with those of [Cp*Rh] complexes bearing the related dimethyldipyridylmethane (Me 2 dpma) ligand. Complex [Cp*Rh(dpma)(NCCH 3 )] 2+ displays a quasireversible rhodium( iii / ii ) reduction by cyclic voltammetry; related electron paramagnetic resonance (EPR) spectroscopic studies confirm access to the unusual rhodium( ii ) oxidation state. Further reduction to the formally rhodium( i ) oxidation state, however, is followed by deprotonation of dpma, as observed in electrochemical studies and chemical reduction experiments. This reactivity can be understood to occur as a consequence of the presence of doubly benzylic protons in the dpma ligand, since use of the analogous Me 2 dpma enables reduction to rhodium( i ) without involvement of ligand deprotonation. These findings highlight the important role of the ligand backbone substitution pattern in influencing the stability of highly-reduced complexes, a key class of metal species for study of electron and proton management in catalysis.more » « less
An official website of the United States government

