- Award ID(s):
- 1661604
- PAR ID:
- 10199057
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 22
- Issue:
- 14
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 7616 to 7624
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Density functional theory studies show that the lowest energy C 4 F 8 Fe(CO) 4 structure is not the very stable experimentally known ferracyclopentane isomer (CF 2 CF 2 CF 2 CF 2 )Fe(CO) 4 obtained from Fe(CO) 12 and tetrafluoroethylene. Instead isomeric (perfluoroolefin)Fe(CO) 4 structures derived from perfluoro-2-butene, perfluoro-1-butene, and perfluoro-2-methylpropene are significantly lower energy structures by up to ∼17 kcal mol −1 . However, the activation energies for the required fluorine shifts from one carbon to an adjacent carbon atom to form these (perfluoroolefin)Fe(CO) 4 complexes from tetrafluoroethylene are very high ( e.g. , ∼70 kcal mol −1 ). Therefore the ferracyclopentane isomer (CF 2 CF 2 CF 2 CF 2 )Fe(CO) 4 , which does not require a fluorine shift to form from Fe 3 (CO) 12 and tetrafluoroethylene, is the kinetically favored product. The lowest energy structures of the binuclear (C 4 F 8 ) 2 Fe 2 (CO) n ( n = 7, 6) derivatives have bridging perfluorocarbene ligands and terminal perfluoroolefin ligands.more » « less
-
Synthetic control of the influence of steric and electronic factors on the ultrafast (picosecond) isomerization of penta-coordinate ruthenium dithietene complexes (Ru((CF 3 ) 2 C 2 S 2 )(CO)(L) 2 , where L = a monodentate phosphine ligand) is reported. Seven new ruthenium dithietene complexes were prepared and characterized by single crystal X-ray diffraction. The complexes are all square pyramidal and differ only in the axial vs. equatorial coordination of the carbonyl ligand. Fourier Transform Infrared (FTIR) spectroscopy was used to study the ν (CO) bandshapes of the complexes in solution, and these reveal rapid exchange between two or three isomers of each complex. Isomerization is proposed to follow a Berry psuedorotation-like mechanism where a metastable, trigonal bipyramidal (TBP) intermediate is observed spectroscopically. Electronic tuning of the phosphine ligands L = PPh 3 , P(( p -Me)Ph) 3 , (( p -Cl)Ph) 3 , at constant cone angle is found to have little effect on the kinetics or thermodynamic stabilities of the axial, equatorial and TBP isomers of the differently substituted complexes. Steric tuning of the phosphine ligands over a range of phosphine cone angles (135 < θ < 165°) has a profound impact on the isomerization process, and in the limit of greatest steric bulk, the axial isomer is not observable. Temperature dependence of the FTIR spectra was used to obtain the relative thermodynamic stabilities of the different isomers of each of the seven ruthenium dithietene complexes. This study details how ligand steric effects can be used to direct the solution state dynamics on the picosecond time scale of discrete isomers energetically separated by <2.2 kcal mol −1 . This work provides the most detailed description to date of ultrafast isomerization in the ground states of transition metal complexes.more » « less
-
Abstract Binuclear alkyne manganese carbonyls of the type (RC≡CR')Mn2(CO)
n (R and R'=methyl or dimethylamino;n =8, 7, 6) and their isomers related to the experimentally known (MeC2NEt2)Mn2(CO)n (n =8, 7) structures have been investigated by density functional theory. The alkyne ligand remains intact in the only low energy (Me2N)2C2Mn2(CO)8isomer, which has a central Mn2C2tetrahedrane unit and is otherwise analogous to the well‐known (alkyne)Co2(CO)6derivatives except for one more CO group per metal atom. The low‐energy structures of the unsaturated (Me2N)2C2Mn2(CO)n (n =7, 6) systems include isomers in which the nitrogen atom of one of the dimethylamino groups as well as the C≡C triple bond of the alkyne is coordinated to the central Mn2unit. In other low‐energy (Me2N)2C2Mn2(CO)n (n =7, 6) isomers the alkyne C≡C triple bond has broken completely to form two separate bridging dimethylaminocarbyne Me2NC ligands analogous to the experimentally known iron carbonyl complex (Et2NC)2Fe2(CO)6. The (alkyne)Mn2(CO)n (n =8, 7, 6) systems of the alkynes MeC≡CMe and Me2NC≡CMe with methyl substituents have significantly more complicated potential surfaces. In these systems the lowest energy isomers have bridging ligands derived from the alkyne in which one or two hydrogen atoms have migrated from a methyl group to one or both of the alkyne carbon atoms. These bridging ligands include allene, manganallyl, and vinylcarbene ligands, the first two of which have been realized experimentally in research by Adams and coworkers. Theoretical studies suggest that the mechanism for the conversion of the simple alkyne octacarbonyl (MeC2NMe2)Mn2(CO)8to the dimethylaminomanganaallyl complex Mn2(CO)7[μ‐η4‐C3H3Me2] involves decarbonylation to the heptacarbonyl and the hexacarbonyl complexes. Subsequent hydrogen migrations then occur through intermediates with C−H−Mn agostic interactions to give the final product. Eight transition states for this mechanistic sequence have been identified with activation energies of ∼20 kcal/mol for the first hydrogen migration and ∼14 kcal/mol for the second hydrogen migration. -
The correlation consistent Composite Approach for transition metals (ccCA-TM) and density functional theory (DFT) computations have been applied to investigate the fluxional mechanisms of cyclooctatetraene tricarbonyl chromium ((COT)Cr(CO)3) and 1,3,5,7-tetramethylcyclooctatetraene tricarbonyl chromium, molybdenum, and tungsten ((TMCOT)M(CO)3 (M = Cr, Mo, and W)) complexes. The geometries of (COT)Cr(CO)3 were fully characterized with the PBEPBE, PBE0, B3LYP, and B97-1 functionals with various basis set/ECP combinations, while all investigated (TMCOT)M(CO)3 complexes were fully characterized with the PBEPBE, PBE0, and B3LYP methods. The energetics of the fluxional dynamics of (COT)Cr(CO)3 were examined using the correlation consistent Composite Approach for transition metals (ccCA-TM) to provide reliable energy benchmarks for corresponding DFT results. The PBE0/BS1 results are in semiquantitative agreement with the ccCA-TM results. Various transition states were identified for the fluxional processes of (COT)Cr(CO)3. The PBEPBE/BS1 energetics indicate that the 1,2-shift is the lowest energy fluxional process, while the B3LYP/BS1 energetics (where BS1 = H, C, O: 6-31G(d′); M: mod-LANL2DZ(f)-ECP) indicate the 1,3-shift having a lower electronic energy of activation than the 1,2-shift by 2.9 kcal mol−1. Notably, PBE0/BS1 describes the (CO)3 rotation to be the lowest energy process, followed by the 1,3-shift. Six transition states have been identified in the fluxional processes of each of the (TMCOT)M(CO)3 complexes (except for (TMCOT)W(CO)3), two of which are 1,2-shift transition states. The lowest-energy fluxional process of each (TMCOT)M(CO)3 complex (computed with the PBE0 functional) has a ΔG‡ of 12.6, 12.8, and 13.2 kcal mol−1 for Cr, Mo, and W complexes, respectively. Good agreement was observed between the experimental and computed 1H-NMR and 13C-NMR chemical shifts for (TMCOT)Cr(CO)3 and (TMCOT)Mo(CO)3 at three different temperature regimes, with coalescence of chemically equivalent groups at higher temperatures.more » « less
-
Structural characterization of the complex [B(β-pinane) 3 ] (1) reveals non-covalent H⋯H contacts that are consistent with the generation of London dispersion energies involving the β-pinane ligand frameworks. The homolytic fragmentations of 1 , and camphane and sabinane analogues ([B(camphane) 3 ] (2) and [B(sabinane) 3 ] (3)) were studied computationally. Isodesmic exchange results showed that London dispersion interactions are highly dependent on the terpene's stereochemistry, with the β-pinane framework providing the greatest dispersion free energy (Δ G = −7.9 kcal mol −1 ) with Grimme's dispersion correction (D3BJ) employed. PMe 3 was used to coordinate to [B(β-pinane) 3 ], giving the complex [Me 3 P–B(β-pinane) 3 ] ( 4 ), which displayed a dynamic coordination equilibrium in solution. The association process was found to be slightly endergonic at 302 K (Δ G = +0.29 kcal mol −1 ).more » « less