skip to main content

Title: Benchmarking the Fluxional Processes of Organometallic Piano-Stool Complexes
The correlation consistent Composite Approach for transition metals (ccCA-TM) and density functional theory (DFT) computations have been applied to investigate the fluxional mechanisms of cyclooctatetraene tricarbonyl chromium ((COT)Cr(CO)3) and 1,3,5,7-tetramethylcyclooctatetraene tricarbonyl chromium, molybdenum, and tungsten ((TMCOT)M(CO)3 (M = Cr, Mo, and W)) complexes. The geometries of (COT)Cr(CO)3 were fully characterized with the PBEPBE, PBE0, B3LYP, and B97-1 functionals with various basis set/ECP combinations, while all investigated (TMCOT)M(CO)3 complexes were fully characterized with the PBEPBE, PBE0, and B3LYP methods. The energetics of the fluxional dynamics of (COT)Cr(CO)3 were examined using the correlation consistent Composite Approach for transition metals (ccCA-TM) to provide reliable energy benchmarks for corresponding DFT results. The PBE0/BS1 results are in semiquantitative agreement with the ccCA-TM results. Various transition states were identified for the fluxional processes of (COT)Cr(CO)3. The PBEPBE/BS1 energetics indicate that the 1,2-shift is the lowest energy fluxional process, while the B3LYP/BS1 energetics (where BS1 = H, C, O: 6-31G(d′); M: mod-LANL2DZ(f)-ECP) indicate the 1,3-shift having a lower electronic energy of activation than the 1,2-shift by 2.9 kcal mol−1. Notably, PBE0/BS1 describes the (CO)3 rotation to be the lowest energy process, followed by the 1,3-shift. Six transition states have been identified in the fluxional processes of each more » of the (TMCOT)M(CO)3 complexes (except for (TMCOT)W(CO)3), two of which are 1,2-shift transition states. The lowest-energy fluxional process of each (TMCOT)M(CO)3 complex (computed with the PBE0 functional) has a ΔG‡ of 12.6, 12.8, and 13.2 kcal mol−1 for Cr, Mo, and W complexes, respectively. Good agreement was observed between the experimental and computed 1H-NMR and 13C-NMR chemical shifts for (TMCOT)Cr(CO)3 and (TMCOT)Mo(CO)3 at three different temperature regimes, with coalescence of chemically equivalent groups at higher temperatures. « less
Authors:
; ;
Award ID(s):
1800201
Publication Date:
NSF-PAR ID:
10318314
Journal Name:
Molecules
Volume:
26
Issue:
8
ISSN:
1420-3049
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the synthesis of molybdenum and tungsten bromo dicarbonyl complexes (POCOPtBu)MIIBr(CO)2(M  =  Mo or W; POCOPtBu  =  κ3-C6H3-1,3-[OP( tBu)2]2) supported by an anionic PCP pincer ligand, and the chromium complex (PNPtBu)Cr0(CO)3(PNPtBu  =  2,6-bis(di- tert-butyl-phosphinomethyl)pyridine) bearing a neutral PNP pincer scaffold. The three group six complexes described in this study have been characterized by Liquid Injection Field Desorption Ionization Mass Spectrometry (LIFDI-MS), NMR, and IR spectroscopy. Single crystal X-ray diffraction studies show the MoIIand WIIcomplexes adopt a six-coordinate distorted trigonal prismatic geometry, whereas the Cr0complex exhibits a distorted octahedral geometry.

  2. The known sandwich compound [η 5 -(CH 2 ) 3 N 2 (BPh) 2 CMe] 2 Fe in which adjacent C 2 units are replaced by isoelectronic BN units can be considered as a boraza analogues of ferrocene similar to borazine, B 3 N 3 H 6 , considered as a boraza analogue of benzene. In this connection, the related bis(1,2,3,5-tetramethyl-1,2-diaza-3,5-diborolyl) derivatives (Me 4 B 2 N 2 CH) 2 M (M = Ti, V, Cr, Mn, Fe, Co, Ni) for all of the first row transition metals have been optimized using density functional theory for comparison with the isoelectronic tetramethylcyclopentadienyl derivatives (Me 4 C 5 H) 2 M. Low-energy sandwich structures having parallel B 2 N 2 C rings in a trans orientation are found for all seven metals. The 1,2-diaza-3,5-diborolyl ligand appears to be a weaker field ligand than the isoelectronic cyclopentadienyl ligand as indicated by higher spin ground states for some (η 5 -Me 4 B 2 N 2 CH) 2 M sandwich compounds relative to the corresponding metallocenes (η 5 -Me 4 C 5 H) 2 M. Thus (η 5 -Me 4 B 2 N 2 CH) 2 Cr has a quintet ground state in contrastmore »to the triplet ground state of (η 5 -Me 4 C 5 H) 2 Cr. Similarly, the sextet ground state of (η 5 -Me 4 B 2 N 2 CH) 2 Mn lies ∼18 kcal mol −1 below the quartet state in contrast to the doublet ground state of the isoelectronic (Me 4 C 5 H) 2 Mn. These sandwich compounds are potentially accessible by reaction of 1,2-diaza-3,5-diborolide anions with metal halides analogous to the synthesis of [η 5 -(CH 2 ) 3 N 2 (BPh) 2 CMe] 2 Fe.« less
  3. Density functional theory studies show that the lowest energy C 4 F 8 Fe(CO) 4 structure is not the very stable experimentally known ferracyclopentane isomer (CF 2 CF 2 CF 2 CF 2 )Fe(CO) 4 obtained from Fe(CO) 12 and tetrafluoroethylene. Instead isomeric (perfluoroolefin)Fe(CO) 4 structures derived from perfluoro-2-butene, perfluoro-1-butene, and perfluoro-2-methylpropene are significantly lower energy structures by up to ∼17 kcal mol −1 . However, the activation energies for the required fluorine shifts from one carbon to an adjacent carbon atom to form these (perfluoroolefin)Fe(CO) 4 complexes from tetrafluoroethylene are very high ( e.g. , ∼70 kcal mol −1 ). Therefore the ferracyclopentane isomer (CF 2 CF 2 CF 2 CF 2 )Fe(CO) 4 , which does not require a fluorine shift to form from Fe 3 (CO) 12 and tetrafluoroethylene, is the kinetically favored product. The lowest energy structures of the binuclear (C 4 F 8 ) 2 Fe 2 (CO) n ( n = 7, 6) derivatives have bridging perfluorocarbene ligands and terminal perfluoroolefin ligands.
  4. Fluorocarbons have been shown experimentally by Baker and coworkers to combine with the cyclopentadienylcobalt (CpCo) moiety to form fluoroolefin and fluorocarbene complexes as well as fluorinated cobaltacyclic rings. In this connection density functional theory (DFT) studies on the cyclopentadienylcobalt fluorocarbon complexes CpCo(L)(C n F 2n ) (L = CO, PMe 3 ; n = 3 and 4) indicate structures with perfluoroolefin ligands to be the lowest energy structures followed by perfluorometallacycle structures and finally by structures with perfluorocarbene ligands. Thus, for the CpCo(L)(C 3 F 6 ) (L = CO, PMe 3 ) complexes, the perfluoropropene structure has the lowest energy, followed by the perfluorocobaltacyclobutane structure and the perfluoroisopropylidene structure less stable by 8 to 11 kcal mol −1 , and the highest energy perfluoropropylidene structure less stable by more than 12 kcal mol −1 . For the two metal carbene structures Cp(L)CoC(CF 3 ) 2 and Cp(L)CoCF(C 2 F 5 ), the former is more stable than the latter, even though the latter has Fischer carbene character. For the CpCo(L)(C 4 F 8 ) (L = CO, PMe 3 ) complexes, the perfluoroolefin complex structures have the lowest energies, followed by the perfluorometallacycle structures at 10 to 20 kcalmore »mol −1 , and the structures with perfluorocarbene ligands at yet higher energies more than 20 kcal mol −1 above the lowest energy structure. This is consistent with the experimentally observed isomerization of the perfluorinated cobaltacyclobutane complexes CpCo(PPh 2 Me)(–CFR–CF 2 –CF 2 –) (R = F, CF 3 ) to the perfluoroolefin complexes CpCo(PPh 2 Me)(RCFCF 2 ) in the presence of catalytic quantities of HN(SO 2 CF 3 ) 2 . Further refinement of the relative energies by the state-of-the-art DLPNO-CCSD(T) method gives results essentially consistent with the DFT results summarized above.« less
  5. Three routes are explored to the title halide/cyanide complexes trans -Fe(CO)(NO)(X)(P((CH 2 ) 14 ) 3 P) ( 9c-X ; X = Cl/Br/I/CN), the Fe(CO)(NO)(X) moieties of which can rotate within the diphosphine cages (Δ H ‡ /Δ S ‡ (kcal mol −1 /eu −1 ) 5.9/−20.4 and 7.4/−23.9 for 9c-Cl and 9c-I from variable temperature 13 C NMR spectra). First, reactions of the known cationic complex trans -[Fe(CO) 2 (NO)(P((CH 2 ) 14 ) 3 P)] + BF 4 − and Bu 4 N + X − give 9c-Cl /- Br /- I /- CN (75–83%). Second, reactions of the acyclic complexes trans -Fe(CO)(NO)(X)(P((CH 2 ) m CHCH 2 ) 3 ) 2 and Grubbs’ catalyst afford the tris(cycloalkenes) trans -Fe(CO)(NO)(X)(P((CH 2 ) m CHCH(CH 2 ) m ) 3 P) ( m /X = 6/Cl,Br,I,CN, 7/Cl,Br, 8/Cl,Br) as mixtures of Z / E isomers (24–41%). Third, similar reactions of trans -[Fe(CO) 2 (NO)(P((CH 2 ) m CHCH 2 ) 3 ) 2 ] + BF 4 − and Grubbs’ catalyst afford crude trans -[Fe(CO) 2 (NO)P((CH 2 ) m CHCH(CH 2 ) m ) 3 P)] + BF 4 − ( m = 6, 8). However, the CCmore »hydrogenations required to consummate routes 2 and 3 are problematic. Crystal structures of 9c-Cl /- Br /- CN are determined. Although the CO/NO/X ligands are disordered, the void space within the diphosphine cages is analyzed in terms of horizontal and vertical constraints upon Fe(CO)(NO)(X) rotation and the NMR data. The molecules pack in identical motifs with parallel P–Fe–P axes, and without intermolecular impediments to rotation in the solid state.« less