Starting from Kirchhoff-Huygens representation and Duhamel's principle of time-domain wave equations, we propose novel butterfly-compressed Hadamard integrators for self-adjoint wave equations in both time and frequency domain in an inhomogeneous medium. First, we incorporate the leading term of Hadamard's ansatz into the Kirchhoff-Huygens representation to develop a short-time valid propagator. Second, using Fourier transform in time, we derive the corresponding Eulerian short-time propagator in the frequency domain; on top of this propagator, we further develop a time-frequency-time (TFT) method for the Cauchy problem of time-domain wave equations. Third, we further propose a time-frequency-time-frequency (TFTF) method for the corresponding point-source Helmholtz equation, which provides Green's functions of the Helmholtz equation for all angular frequencies within a given frequency band. Fourth, to implement the TFT and TFTF methods efficiently, we introduce butterfly algorithms to compress oscillatory integral kernels at different frequencies. As a result, the proposed methods can construct wave field beyond caustics implicitly and advance spatially overturning waves in time naturally with quasi-optimal computational complexity and memory usage. Furthermore, once constructed the Hadamard integrators can be employed to solve both time-domain wave equations with various initial conditions and frequency-domain wave equations with different point sources. Numerical examples for two-dimensional wave equations illustrate the accuracy and efficiency of the proposed methods.
more »
« less
Green's function for anisotropic dispersive poroelastic media based on the Radon transform and eigenvector diagonalization
A compact Green's function for general dispersive anisotropic poroelastic media in a full-frequency regime is presented for the first time. First, starting in a frequency domain, the anisotropic dispersion is exactly incorporated into the constitutive relationship, thus avoiding fractional derivatives in a time domain. Then, based on the Radon transform, the original three-dimensional differential equation is effectively reduced to a one-dimensional system in space. Furthermore, inspired by the strategy adopted in the characteristic analysis of hyperbolic equations, the eigenvector diagonalization method is applied to decouple the one-dimensional vector problem into several independent scalar equations. Consequently, the fundamental solutions are easily obtained. A further derivation shows that Green's function can be decomposed into circumferential and spherical integrals, corresponding to static and transient responses, respectively. The procedures shown in this study are also compatible with other pertinent multi-physics coupling problems, such as piezoelectric, magneto-electro-elastic and thermo-elastic materials. Finally, the verifications and validations with existing analytical solutions and numerical solvers corroborate the correctness of the proposed Green's function.
more »
« less
- Award ID(s):
- 1812573
- PAR ID:
- 10199183
- Date Published:
- Journal Name:
- Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Volume:
- 475
- Issue:
- 2221
- ISSN:
- 1364-5021
- Page Range / eLocation ID:
- 20180610
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Consider the elastic scattering of a time-harmonic wave by multiple well-separated rigid particles with smooth boundaries in two dimensions. Instead of using the complex Green's tensor of the elastic wave equation, we utilize the Helmholtz decomposition to convert the boundary value problem of the elastic wave equation into a coupled boundary value problem of the Helmholtz equation. Based on single, double, and combined layer potentials with the simpler Green's function of the Helmholtz equation, we present three different boundary integral equations for the coupled boundary value problem. The well-posedness of the new integral equations is established. Computationally, a scattering matrix based method is proposed to evaluate the elastic wave for arbitrarily shaped particles. The method uses the local expansion for the incident wave and the multipole expansion for the scattered wave. The linear system of algebraic equations is solved by GMRES with fast multipole method (FMM) acceleration. Numerical results show that the method is fast and highly accurate for solving elastic scattering problems with multiple particles.more » « less
-
In some applications, it is reasonable to assume that geodesics (rays) have a consistent orientation so that a time-harmonic elastic wave equation may be viewed as an evolution equation in one of the spatial directions. With such applications in mind, motivated by our recent work [Hadamard- Babich ansatz for point-source elastic wave equations in variable media at high frequencies, Multiscale Model Simul. 19/1 (2021) 46–86], we propose a new truncated Hadamard-Babich ansatz based globally valid asymptotic method, dubbed the fast Huygens sweeping method, for computing Green’s functions of frequency-domain point-source elastic wave equations in inhomogeneous media in the high-frequency asymptotic regime and in the presence of caustics. The first novelty of the fast Huygens sweeping method is that the Huygens-Kirchhoff secondary-source principle is used to integrate many locally valid asymptotic solutions to yield a globally valid asymptotic solution so that caustics can be treated automatically. This yields uniformly accurate solutions both near the source and away from it. The second novelty is that a butterfly algorithm is adapted to accelerate matrix-vector products induced by the Huygens-Kirchhoff integral. The new method enjoys the following desired features: (1) it treats caustics automatically; (2) precomputed asymptotic ingredients can be used to construct Green’s functions of elastic wave equations for many different point sources and for arbitrary frequencies; (3) given a specified number of points per wavelength, it constructs Green’s functions in nearly optimal complexity O(N logN) in terms of the total number of mesh points N, where the prefactor of the complexity depends only on the specified accuracy and is independent of the frequency parameter. Three-dimensional numerical examples are presented to demonstrate the performance and accuracy of the new method.more » « less
-
null (Ed.)Abstract The paper extends the recent work (JAM, 88, 061002, 2021) of the Eshelby's tensors for polynomial eigenstrains from a two dimensional (2D) to three dimensional (3D) domain, which provides the solution to the elastic field with continuously distributed eigenstrain on a polyhedral inclusion approximated by the Taylor series of polynomials. Similarly, the polynomial eigenstrain is expanded at the centroid of the polyhedral inclusion with uniform, linear and quadratic order terms, which provides tailorable accuracy of the elastic solutions of polyhedral inhomogeneity by using Eshelby's equivalent inclusion method. However, for both 2D and 3D cases, the stress distribution in the inhomogeneity exhibits a certain discrepancy from the finite element results at the neighborhood of the vertices due to the singularity of Eshelby's tensors, which makes it inaccurate to use the Taylor series of polynomials at the centroid to catch the eigenstrain at the vertices. This paper formulates the domain discretization with tetrahedral elements to accurately solve for eigenstrain distribution and predict the stress field. With the eigenstrain determined at each node, the elastic field can be predicted with the closed-form domain integral of Green's function. The parametric analysis shows the performance difference between the polynomial eigenstrain by the Taylor expansion at the centroid and the 𝐶0 continuous eigenstrain by particle discretization. Because the stress singularity is evaluated by the analytical form of the Eshelby's tensor, the elastic analysis is robust, stable and efficient.more » « less
-
Induction heating is one of the cleanest and most efficient methods for heating materials, utilizing electromagnetic fields induced through AC electric current. This article reports an analytical solution for transient heat transfer in a three‐dimensional (3D) cylindrical object under induction heating. A simplified form of Maxwell's equations is solved to determine the heat generation inside the cylinder by calculating the current density distribution within the body. The temperature within the solid is found from the solution of the unsteady heat equation based on Green's function. Owing to multiple spatial dimensions and time, a separation of variables technique is used to find Green's function. In addition, an innovative algorithm is proposed to take care of the variable material properties in analytical treatment. The analytical solution for temperature is verified with the data obtained from experiments for identical operating conditions. The analytical solution is used to study the impact of heat transfer coefficient and input AC current frequency and amplitude during transient heat diffusion. Our analytical solution suggests that the temperature‐dependent material properties significantly affect the thermal response within the solid. Unlike many other conventional heating methods, the thermal boundary condition changes with time in induction heating, which makes our solution much more challenging.more » « less
An official website of the United States government

