Recent developments in molecular networking have expanded our ability to characterize the metabolome of diverse samples that contain a significant proportion of ion features with no mass spectral match to known compounds. Manual and tool-assisted natural annotation propagation is readily used to classify molecular networks; however, currently no annotation propagation tools leverage consensus confidence strategies enabled by hierarchical chemical ontologies or enable the use of new in silico tools without significant modification. Herein we present ConCISE (Consensus Classifications of In Silico Elucidations) which is the first tool to fuse molecular networking, spectral library matching and in silico class predictions to establish accurate putative classifications for entire subnetworks. By limiting annotation propagation to only structural classes which are identical for the majority of ion features within a subnetwork, ConCISE maintains a true positive rate greater than 95% across all levels of the ChemOnt hierarchical ontology used by the ClassyFire annotation software (superclass, class, subclass). The ConCISE framework expanded the proportion of reliable and consistent ion feature annotation up to 76%, allowing for improved assessment of the chemo-diversity of dissolved organic matter pools from three complex marine metabolomics datasets comprising dominant reef primary producers, five species of the diatom genus Pseudo-nitzchia, and stromatolite sediment samples.
more »
« less
MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools
Metabolomics has started to embrace computational approaches for chemical interpretation of large data sets. Yet, metabolite annotation remains a key challenge. Recently, molecular networking and MS2LDA emerged as molecular mining tools that find molecular families and substructures in mass spectrometry fragmentation data. Moreover, in silico annotation tools obtain and rank candidate molecules for fragmentation spectra. Ideally, all structural information obtained and inferred from these computational tools could be combined to increase the resulting chemical insight one can obtain from a data set. However, integration is currently hampered as each tool has its own output format and efficient matching of data across these tools is lacking. Here, we introduce MolNetEnhancer, a workflow that combines the outputs from molecular networking, MS2LDA, in silico annotation tools (such as Network Annotation Propagation or DEREPLICATOR), and the automated chemical classification through ClassyFire to provide a more comprehensive chemical overview of metabolomics data whilst at the same time illuminating structural details for each fragmentation spectrum. We present examples from four plant and bacterial case studies and show how MolNetEnhancer enables the chemical annotation, visualization, and discovery of the subtle substructural diversity within molecular families. We conclude that MolNetEnhancer is a useful tool that greatly assists the metabolomics researcher in deciphering the metabolome through combination of multiple independent in silico pipelines.
more »
« less
- Award ID(s):
- 1656481
- PAR ID:
- 10199204
- Date Published:
- Journal Name:
- Metabolites
- Volume:
- 9
- Issue:
- 7
- ISSN:
- 2218-1989
- Page Range / eLocation ID:
- 144
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The annotation of small molecules is one of the most challenging and important steps in untargeted mass spectrometry analysis, as most of our biological interpretations rely on structural annotations. Molecular networking has emerged as a structured way to organize and mine data from untargeted tandem mass spectrometry (MS/MS) experiments and has been widely applied to propagate annotations. However, propagation is done through manual inspection of MS/MS spectra connected in the spectral networks and is only possible when a reference library spectrum is available. One of the alternative approaches used to annotate an unknown fragmentation mass spectrum is through the use of in silico predictions. One of the challenges of in silico annotation is the uncertainty around the correct structure among the predicted candidate lists. Here we show how molecular networking can be used to improve the accuracy of in silico predictions through propagation of structural annotations, even when there is no match to a MS/MS spectrum in spectral libraries. This is accomplished through creating a network consensus of re-ranked structural candidates using the molecular network topology and structural similarity to improve in silico annotations. The Network Annotation Propagation (NAP) tool is accessible through the GNPS web-platform https://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp.more » « less
-
Abstract Plant metabolomes are structurally diverse. One of the most popular techniques for sampling this diversity is liquid chromatography–mass spectrometry (LC‐MS), which typically detects thousands of peaks from single organ extracts, many representing true metabolites. These peaks are usually annotated using in‐house retention time or spectral libraries, in silico fragmentation libraries, and increasingly through computational techniques such as machine learning. Despite these advances, over 85% of LC‐MS peaks remain unidentified, posing a major challenge for data analysis and biological interpretation. This bottleneck limits our ability to fully understand the diversity, functions, and evolution of plant metabolites. In this review, we first summarize current approaches for metabolite identification, highlighting their challenges and limitations. We further focus on alternative strategies that bypass the need for metabolite identification, allowing researchers to interpret global metabolic patterns and pinpoint key metabolite signals. These methods include molecular networking, distance‐based approaches, information theory–based metrics, and discriminant analysis. Additionally, we explore their practical applications in plant science and highlight a set of useful tools to support researchers in analyzing complex plant metabolomics data. By adopting these approaches, researchers can enhance their ability to uncover new insights into plant metabolism.more » « less
-
Enzyme function annotation is a fundamental challenge, and numerous computational tools have been developed. However, most of these tools cannot accurately predict functional annotations, such as enzyme commission (EC) number, for less-studied proteins or those with previously uncharacterized functions or multiple activities. We present a machine learning algorithm named CLEAN (contrastive learning–enabled enzyme annotation) to assign EC numbers to enzymes with better accuracy, reliability, and sensitivity compared with the state-of-the-art tool BLASTp. The contrastive learning framework empowers CLEAN to confidently (i) annotate understudied enzymes, (ii) correct mislabeled enzymes, and (iii) identify promiscuous enzymes with two or more EC numbers—functions that we demonstrate by systematic in silico and in vitro experiments. We anticipate that this tool will be widely used for predicting the functions of uncharacterized enzymes, thereby advancing many fields, such as genomics, synthetic biology, and biocatalysis.more » « less
-
Background: Spectral library searching is currently the most common approach for compound annotation in untargeted metabolomics. Spectral libraries applicable to liquid chromatography mass spectrometry have grown in size over the past decade to include hundreds of thousands to millions of mass spectra and tens of thousands of compounds, forming an essential knowledge base for the interpretation of metabolomics experiments. Aim of Review: We describe existing spectral library resources, highlight different strategies for compiling spectral libraries, and discuss quality considerations that should be taken into account when interpreting spectral library searching results. Finally, we describe how spectral libraries are empowering the next generation of machine learning tools in computational metabolomics, and discuss several opportunities for using increasingly accessible large spectral libraries. Key Scientific Concepts of Review: This review focuses on the current state of spectral libraries for untargeted LC-MS/MS based metabolomics. We show how the number of entries in publicly accessible spectral libraries has increased more than 60-fold in the past eight years to aid molecular interpretation and we discuss how the role of spectral libraries in untargeted metabolomics will evolve in the near future.more » « less
An official website of the United States government

