skip to main content


Title: Robust, remeltable and remarkably simple to prepare biomass–sulfur composites
Lignocellulosic biomass holds a tremendous opportunity for transformation into carbon-negative materials, yet the expense of separating biomass into its cellulose and lignin components remains a primary economic barrier to biomass utilization. Herein is reported a simple procedure to convert several biomass-derived materials into robust, recyclable composites through their reaction with elemental sulfur by inverse vulcanization, a process in which olefins are crosslinked by sulfur chains. In an effort to understand the chemistry and the parameters leading to the strength of these composites, sulfur was reacted with four biomass-derivative comonomers: (1) unmodified peanut shell powder, (2) allyl peanut shells, (3) ‘mock’ allyl peanut shells (a mixture containing independently-prepared allyl cellulose and allyl lignin), or (4) peanut shells that have been defatted by extraction of peanut oil. The reactions of these materials with sulfur produce the biomass–sulfur composites PSx , APSx , mAPSx and dfPSx , respectively, where x = wt% sulfur in the monomer feed. The influence of biomass : sulfur ratio was assessed for PSx and APSx . Thermal/mechanical properties of composites were evaluated for comparison to commercial materials. Remarkably, unmodified peanut shell flour can simply be heated with elemental sulfur to produce composites having flexural/compressive strengths exceeding those of Portland cement, an effect traced to the presence of olefin-bearing peanut oil in the peanut shells. When allylated peanut shells are used in this process, a composite having twice the compressive strength of Portland cement is attained.  more » « less
Award ID(s):
1708844
NSF-PAR ID:
10199254
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Materials Advances
Volume:
1
Issue:
7
ISSN:
2633-5409
Page Range / eLocation ID:
2271 to 2278
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Productive utilization of lignocellulosic biomass is critical to the continued advancement of human civilization. Whereas the cellulose component can be efficiently upconverted to automotive fuel-grade ethanol, the lack of upconversion methods for the lignin component constitutes one of the grand challenges facing science. Lignin is an attractive feedstock for structural applications, in which its highly-crosslinked architecture can endow composite structures with high strengths. Prior work suggests that high-strength composites can be prepared by the reaction of olefin-modified lignin with sulfur. Those studies were limited to ≤5 wt% lignin, due to phase-separation of hydrophilic lignin from hydrophobic sulfur matrices. Herein we report a protocol to increase lignin hydrophobicity and thus its incorporation into sulfur-rich materials. This improvement is affected by esterifying lignin with oleic acid prior to its reaction with sulfur. This approach allowed preparation of esterified lignin–sulfur (ELS) composites comprising up to 20 wt% lignin. Two reaction temperatures were employed such that the reaction of ELS with sulfur at 180 °C would only produce S–C bonds at olefinic sites, whereas the reaction at 230 °C would produce C–S bonds at both olefin and aryl sites. Mechanistic analyses and microstructural characterization elucidated two ELS composites having compressive strength values (>20 MPa), exceeding the values observed with ordinary Portland cements. Consequently, this new method represents a way to improve lignin utilization to produce durable composites that represent sustainable alternatives to Portland cements. 
    more » « less
  2. Herein we report a method for the chemical recycling of poly(ethylene terephthalate) (PET) by a three-stage process employing sustainably-sourced organic materials and industrial byproduct sulfur. In this protocol, PET was subject to glycolysis with diethylene glycol to yield low molecular weight oligomers with hydroxyl end groups. The glycolyzed PET (GPET) was then reacted with oleoyl chloride to yield esterified PET (EPET) containing vulcanizable olefin units. The oligomers constituting GPET and EPET were elucidated by MALDI-TOF spectrometry. EPET underwent inverse vulcanization with elemental sulfur (90 wt%) for 35 min or 24 h to yield xPES or mPES, respectively. The composition, thermal, morphological, thermal and mechanical properties were characterized. The composites exhibited good to excellent mechanical properties that were improved significantly by extending the reaction time from 35 min used to prepare xPES (compressive strength = 10.5 MPa, flexural strength = 2.7 MPa) to 24 h used to prepare mPES (compressive strength = 26.9 MPa, flexural strength = 7.7 MPa). Notably, the compressive and flexural strengths of mPES represent 158% and 208% of the values required for residential building foundations made from traditional materials such as ordinary Portland cement. The three-stage approach delineated herein thus represents a way to mediate chemical recycling of waste plastic with green coreagents to yield composites having mechanical properties competitive with existing commercial structural materials. 
    more » « less
  3. Abstract

    A three‐stage route to chemically upcycle post‐consumer poly(ethylene terephthalate) (PET) to produce high compressive strength composites is reported. This procedure involves initial glycolysis with diethylene glycol to produce a mixture (GPET) comprising oligomers of 2–7 terephthalate units followed by trans/esterification of GPET with fatty acid chains supplied by brown grease, an agricultural by‐product of animal fat of relatively low nutritional or fuel value. This process yields PGB comprising a mixture of mono‐terephthalate ester derivatives. The olefin units provided by unsaturated fatty acid chains in brown grease were crosslinked by an inverse vulcanization reaction with elemental sulfur to give composites GBSx(x = wt% S, varied from 80%–90%). The compressive strengths of GBS80(27.5 ± 2.6 MPa) and GBS90(19.2 ± 0.8 MPa) exceed the compressive strength required of ordinary Portland cement (17 MPa) for its use in residential building foundations. The current route represents a way to repurpose waste plastic, energy sector by‐product sulfur, and agricultural by‐product brown grease to give high strength composites with mechanical properties suggesting their possible use to replace less sustainably sourced legacy structural materials.

     
    more » « less
  4. Abstract

    Environmental contamination by plastic waste is a growing threat to the environment and human health. Unfortunately, most post‐consumer plastics are still disposed of in landfills, even plastics that could be easily recycled via simple chemical processes. This disconnect between technology and implementation is partly due to the economic barrier posed by multi‐step processes that convert plastic waste into commodity goods. There is an urgent need for green methods to convert plastic waste directly into marketable commodities via simple processes. Herein we report a simple, single‐stage process to chemically recycle poly(ethylene terephthalate) (PET) to yield composites having thermal and mechanical properties that are competitive with commercial structural materials like Portland cement. In this protocol, a mixture of PET and geraniol are heated with elemental sulfur. In this process, transesterification between geraniol and PET with concomitant thiocracking of the PET backbone leads to the formation of a highly‐crosslinked sulfur–PET–geraniol (SPG) network composite. The composite exhibited compressive strength (23.1 MPa) greater than that required for Portland cement to be used in building foundations. This new, single‐stage chemical recycling strategy thus employs a bio‐olefin and waste sulfur to convert PET waste into a durable composite that could serve as a sustainable alternative to traditional cements.

     
    more » « less
  5. Abstract

    Here are reported composites made by crosslinking unsaturated units in canola, sunflower, or linseed oil with sulfur to yieldCanS,SunS, andLinS, respectively. These plant oils were selected because the average number of crosslinkable unsaturated units per triglyceride vary from 1.3 for canola to 1.5 for sunflower and 1.8 for linseed oil. The remeltable composites show compressive strengths that increase with increasing unsaturation number fromCanS(9.3 MPa) toSunS(17.9 MPa) toLinS(22.9 MPa). These values forSunSandLinSare competitive when compared with the value of 17 MPa required for residential building using traditional Portland cement. The plant oil composites are recyclable over many cycles and can retain up to 100% of strength after 24 hr in oxidizing acid under conditions where Portland cement is dissolved in under 30 min. Infusion of the composites into premade cement blocks affords them with significantly improved acid resistance as well. This work thus provides a simple, nearly 100% atom economical route to convert plant oils and waste sulfur to composites having enhanced performance over commercial structural materials.

     
    more » « less