skip to main content


Title: Data-driven coarse-grained modeling of polymers in solution with structural and dynamic properties conserved
We present data-driven coarse-grained (CG) modeling for polymers in solution, which conserves the dynamic as well as structural properties of the underlying atomistic system. The CG modeling is built upon the framework of the generalized Langevin equation (GLE). The key is to determine each term in the GLE by directly linking it to atomistic data. In particular, we propose a two-stage Gaussian process-based Bayesian optimization method to infer the non-Markovian memory kernel from the data of the velocity autocorrelation function (VACF). Considering that the long-time behaviors of the VACF and memory kernel for polymer solutions can exhibit hydrodynamic scaling (algebraic decay with time), we further develop an active learning method to determine the emergence of hydrodynamic scaling, which can accelerate the inference process of the memory kernel. The proposed methods do not rely on how the mean force or CG potential in the GLE is constructed. Thus, we also compare two methods for constructing the CG potential: a deep learning method and the iterative Boltzmann inversion method. With the memory kernel and CG potential determined, the GLE is mapped onto an extended Markovian process to circumvent the expensive cost of directly solving the GLE. The accuracy and computational efficiency of the proposed CG modeling are assessed in a model star-polymer solution system at three representative concentrations. By comparing with the reference atomistic simulation results, we demonstrate that the proposed CG modeling can robustly and accurately reproduce the dynamic and structural properties of polymers in solution.  more » « less
Award ID(s):
1761068
NSF-PAR ID:
10199421
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Soft Matter
Volume:
16
Issue:
36
ISSN:
1744-683X
Page Range / eLocation ID:
8330 to 8344
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a bottom-up coarse-graining (CG) method to establish implicit-solvent CG modeling for polymers in solution, which conserves the dynamic properties of the reference microscopic system. In particular, tens to hundreds of bonded polymer atoms (or Lennard-Jones beads) are coarse-grained as one CG particle, and the solvent degrees of freedom are eliminated. The dynamics of the CG system is governed by the generalized Langevin equation (GLE) derived via the Mori-Zwanzig formalism, by which the CG variables can be directly and rigorously linked to the microscopic dynamics generated by molecular dynamics (MD) simulations. The solvent-mediated dynamics of polymers is modeled by the non-Markovian stochastic dynamics in GLE, where the memory kernel can be computed from the MD trajectories. To circumvent the difficulty in direct evaluation of the memory term and generation of colored noise, we exploit the equivalence between the non-Markovian dynamics and Markovian dynamics in an extended space. To this end, the CG system is supplemented with auxiliary variables that are coupled linearly to the momentum and among themselves, subject to uncorrelated Gaussian white noise. A high-order time-integration scheme is used to solve the extended dynamics to further accelerate the CG simulations. To assess, validate, and demonstrate the established implicit-solvent CG modeling, we have applied it to study four different types of polymers in solution. The dynamic properties of polymers characterized by the velocity autocorrelation function, diffusion coefficient, and mean square displacement as functions of time are evaluated in both CG and MD simulations. Results show that the extended dynamics with auxiliary variables can construct arbitrarily high-order CG models to reproduce dynamic properties of the reference microscopic system and to characterize long-time dynamics of polymers in solution. 
    more » « less
  2. null (Ed.)
    The present work concerns the transferability of coarse-grained (CG) modeling in reproducing the dynamic properties of the reference atomistic systems across a range of parameters. In particular, we focus on implicit-solvent CG modeling of polymer solutions. The CG model is based on the generalized Langevin equation, where the memory kernel plays the critical role in determining the dynamics in all time scales. Thus, we propose methods for transfer learning of memory kernels. The key ingredient of our methods is Gaussian process regression. By integration with the model order reduction via proper orthogonal decomposition and the active learning technique, the transfer learning can be practically efficient and requires minimum training data. Through two example polymer solution systems, we demonstrate the accuracy and efficiency of the proposed transfer learning methods in the construction of transferable memory kernels. The transferability allows for out-of-sample predictions, even in the extrapolated domain of parameters. Built on the transferable memory kernels, the CG models can reproduce the dynamic properties of polymers in all time scales at different thermodynamic conditions (such as temperature and solvent viscosity) and for different systems with varying concentrations and lengths of polymers. 
    more » « less
  3. null (Ed.)
    Modeling a high-dimensional Hamiltonian system in reduced dimensions with respect to coarse-grained (CG) variables can greatly reduce computational cost and enable efficient bottom-up prediction of main features of the system for many applications. However, it usually experiences significantly altered dynamics due to loss of degrees of freedom upon coarse-graining. To establish CG models that can faithfully preserve dynamics, previous efforts mainly focused on equilibrium systems. In contrast, various soft matter systems are known to be out of equilibrium. Therefore, the present work concerns non-equilibrium systems and enables accurate and efficient CG modeling that preserves non-equilibrium dynamics and is generally applicable to any non-equilibrium process and any observable of interest. To this end, the dynamic equation of a CG variable is built in the form of the non-stationary generalized Langevin equation (nsGLE), where the two-time memory kernel is determined from the data of the auto-correlation function of the observable of interest. By embedding the nsGLE in an extended dynamics framework, the nsGLE can be solved efficiently to predict the non-equilibrium dynamics of the CG variable. To prove and exploit the equivalence of the nsGLE and extended dynamics, the memory kernel is parameterized in a two-time exponential expansion. A data-driven hybrid optimization process is proposed for the parameterization, which integrates the differential-evolution method with the Levenberg–Marquardt algorithm to efficiently tackle a non-convex and high-dimensional optimization problem. 
    more » « less
  4. The integral equation coarse-graining (IECG) approach is a promising high-level coarse-graining (CG) method for polymer melts, with variable resolution from soft spheres to multi CG sites, which preserves the structural and thermodynamical consistencies with the related atomistic simulations. When compared to the atomistic description, the procedure of coarse-graining results in smoother free energy surfaces, longer-ranged potentials, a decrease in the number of interaction sites for a given polymer, and more. Because these changes have competing effects on the computational efficiency of the CG model, care needs to be taken when studying the effect of coarse-graining on the computational speed-up in CG molecular dynamics simulations. For instance, treatment of long-range CG interactions requires the selection of cutoff distances that include the attractive part of the effective CG potential and force. In particular, we show how the complex nature of the range and curvature of the effective CG potential, the selection of a suitable CG timestep, the choice of the cutoff distance, the molecular dynamics algorithms, and the smoothness of the CG free energy surface affect the efficiency of IECG simulations. By direct comparison with the atomistic simulations of relatively short chain polymer melts, we find that the overall computational efficiency is highest for the highest level of CG (soft spheres), with an overall improvement of the computational efficiency being about 10 6 –10 8 for various CG levels/resolutions. Therefore, the IECG method can have important applications in molecular dynamics simulations of polymeric systems. Finally, making use of the standard spatial decomposition algorithm, the parallel scalability of the IECG simulations for various levels of CG is presented. Optimal parallel scaling is observed for a reasonably large number of processors. Although this study is performed using the IECG approach, its results on the relation between the level of CG and the computational efficiency are general and apply to any properly-constructed CG model. 
    more » « less
  5. ABSTRACT

    In an effort to accelerate simulations exploring deformation mechanisms in semicrystalline polymers, we have created structure‐based coarse‐grained (CG) models of polyethylene and evaluated the extent to which they can simultaneously represent its amorphous and crystalline phases. Two CG models were calibrated from target data sampled from atomistic simulations of supercooled oligomer melts that differ in how accurately they represent the distribution of bond lengths between CG sites. Both models yield semicrystalline morphology when simulations are performed at ambient conditions, and both accurately predict the glass transition and melt temperatures. A thorough evaluation of the models was then conducted to assess how well they represent various properties of the amorphous and crystalline phases. We found that the model that more faithfully reproduces the target bond length distribution poorly represents the crystalline phase, which results from its inability to reproduce correlations in the structural distributions. The second model, which utilizes a harmonic bond potential and thus reproduces the target bond length distribution less accurately, represents the structure and chain mobility within the crystalline phase more realistically. Furthermore, the latter model more faithfully reproduces the vastly different relaxation timescales of the phases, a critical feature for modeling deformation mechanisms in semicrystalline polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 331–342

     
    more » « less