skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: net.science: A Cyberinfrastructure for Sustained Innovation in Network Science and Engineering
Abstract—Networks have entered the mainstream lexicon over the last ten years. This coincides with the pervasive use of networks in a host of disciplines of interest to industry and academia, including biology, neurology, genomics, psychology, social sciences, economics, psychology, and cyber-physical systems and infrastructure. Several dozen journals and conferences regularly contain articles related to networks. Yet, there are no general purpose cyberinfrastructures (CI) that can be used across these varied disciplines and domains. Furthermore, while there are scientific gateways that include some network science capabilities for particular domains (e.g., biochemistry, genetics), there are no general-purpose network-based scientific gateways. In this work, we introduce net.science, a CI for Network Engineering and Science, that is designed to be a community resource. This paper provides an overview of net.science, addressing key requirements and concepts, CI components, the types of applications that our CI will support, and various dimensions of our evaluation process. Index Terms—cyberinfrastructure, network science, net.science  more » « less
Award ID(s):
1916805
NSF-PAR ID:
10199455
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
Gateways Conference 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Networks are readily identifiable in many aspects of society: cellular telephone networks and social networks are two common examples. Networks are studied within many academic disciplines. Consequently, a large body of (open-source) software is being produced to perform computations on networks. A cyberinfrastructure for network science, called net.science, is being built to provide a computational platform and resource for both producers and consumers of networks and software tools. This tutorial is a hands-on demonstration of some of net.science’s features. 
    more » « less
  2. Scientists in disciplines such as neuroscience and bioinformatics are increasingly relying on science gateways for experimentation on voluminous data, as well as analysis and visualization in multiple perspectives. Though current science gateways provide easy access to computing resources, datasets and tools specific to the disciplines, scientists often use slow and tedious manual efforts to perform knowledge discovery to accomplish their research/education tasks. Recommender systems can provide expert guidance and can help them to navigate and discover relevant publications, tools, data sets, or even automate cloud resource configurations suitable for a given scientific task. To realize the potential of integration of recommenders in science gateways in order to spur research productivity,we present a novel “OnTimeRecommend" recommender system. The OnTimeRecommend comprises of several integrated recommender modules implemented as microservices that can be augmented to a science gateway in the form of a recommender-as-a-service. The guidance for use of the recommender modules in a science gateway is aided by a chatbot plug-in viz., Vidura Advisor. To validate our OnTimeRecommend, we integrate and show benefits for both novice and expert users in domain-specific knowledge discovery within two exemplar science gateways, one in neuroscience (CyNeuro) and the other in bioinformatics (KBCommons). 
    more » « less
  3. Abstract

    Advancements in computing power have recently made it possible to utilize machine learning and deep learning to push scientific computing forward in a range of disciplines, such as fluid mechanics, solid mechanics, materials science, etc. The incorporation of neural networks is particularly crucial in this hybridization process. Due to their intrinsic architecture, conventional neural networks cannot be successfully trained and scoped when data are sparse, which is the case in many scientific and engineering domains. Nonetheless, neural networks provide a solid foundation to respect physics-driven or knowledge-based constraints during training. Generally speaking, there are three distinct neural network frameworks to enforce the underlying physics: (i) physics-guided neural networks (PgNNs), (ii) physics-informed neural networks (PiNNs), and (iii) physics-encoded neural networks (PeNNs). These methods provide distinct advantages for accelerating the numerical modeling of complex multiscale multiphysics phenomena. In addition, the recent developments in neural operators (NOs) add another dimension to these new simulation paradigms, especially when the real-time prediction of complex multiphysics systems is required. All these models also come with their own unique drawbacks and limitations that call for further fundamental research. This study aims to present a review of the four neural network frameworks (i.e., PgNNs, PiNNs, PeNNs, and NOs) used in scientific computing research. The state-of-the-art architectures and their applications are reviewed, limitations are discussed, and future research opportunities are presented in terms of improving algorithms, considering causalities, expanding applications, and coupling scientific and deep learning solvers.

     
    more » « less
  4. Science and engineering applications are now generating data at an unprecedented rate. From large facilities such as the Large Hadron Collider to portable DNA sequencing devices, these instruments can produce hundreds of terabytes in short periods of time. Researchers and other professionals rely on networks to transfer data between sensing locations, instruments, data storage devices, and computing systems. While general-purpose networks, also referred to as enterprise networks, are capable of transporting basic data, such as e-mails and Web content, they face numerous challenges when transferring terabyte- and petabyte-scale data. At best, transfers of science data on these networks may last days or even weeks. In response to this challenge, the Science Demilitarized Zone (Science DMZ) has been proposed. The Science DMZ is a network or a portion of a network designed to facilitate the transfer of big science data. The main elements of the Science DMZ include: 1) specialized end devices, referred to as data transfer nodes (DTNs), built for sending/receiving data at a high speed over wide area networks; 2) high-throughput, friction-free paths connecting DTNs, instruments, storage devices, and computing systems; 3) performance measurement devices to monitor end-to-end paths over multiple domains; and 4) security policies and enforcement mechanisms tailored for high-performance environments. Despite the increasingly important role of Science DMZs, the literature is still missing a guideline to provide researchers and other professionals with the knowledge to broaden the understanding and development of Science DMZs. This paper addresses this gap by presenting a comprehensive tutorial on Science DMZs. The tutorial reviews fundamental network concepts that have a large impact on Science DMZs, such as router architecture, TCP attributes, and operational security. Then, the tutorial delves into protocols and devices at different layers, from the physical cyberinfrastructure to application-layer tools and security appliances, that must be carefully considered for the optimal operation of Science DMZs. This paper also contrasts Science DMZs with general-purpose networks, and presents empirical results and use cases applicable to current and future Science DMZs. 
    more » « less
  5. Large scientific facilities are unique and complex infrastructures that have become fundamental instruments for enabling high quality, world-leading research to tackle scientific problems at unprecedented scales. Cyberinfrastructure (CI) is an essential component of these facilities, providing the user community with access to data, data products, and services with the potential to transform data into knowledge. However, the timely evolution of the CI available at large facilities is challenging and can result in science communities requirements not being fully satisfied. Furthermore, integrating CI across multiple facilities as part of a scientific workflow is hard, resulting in data silos. In this paper, we explore how science gateways can provide improved user experiences and services that may not be offered at large facility datacenters. Using a science gateway supported by the Science Gateway Community Institute, which provides subscription-based delivery of streamed data and data products from the NSF Ocean Observatories Initiative (OOI), we propose a system that enables streaming-based capabilities and workflows using data from large facilities, such as the OOI, in a scalable manner. We leverage data infrastructure building blocks, such as the Virtual Data Collaboratory, which provides data and comput- ing capabilities in the continuum to efficiently and collaboratively integrate multiple data-centric CIs, build data-driven workflows, and connect large facilities data sources with NSF-funded CI, such as XSEDE. We also introduce architectural solutions for running these workflows using dynamically provisioned federated CI. 
    more » « less