skip to main content

Title: net.science: A Cyberinfrastructure for Sustained Innovation in Network Science and Engineering
Abstract—Networks have entered the mainstream lexicon over the last ten years. This coincides with the pervasive use of networks in a host of disciplines of interest to industry and academia, including biology, neurology, genomics, psychology, social sciences, economics, psychology, and cyber-physical systems and infrastructure. Several dozen journals and conferences regularly contain articles related to networks. Yet, there are no general purpose cyberinfrastructures (CI) that can be used across these varied disciplines and domains. Furthermore, while there are scientific gateways that include some network science capabilities for particular domains (e.g., biochemistry, genetics), there are no general-purpose network-based scientific gateways. In this work, we introduce net.science, a CI for Network Engineering and Science, that is designed to be a community resource. This paper provides an overview of net.science, addressing key requirements and concepts, CI components, the types of applications that our CI will support, and various dimensions of our evaluation process. Index Terms—cyberinfrastructure, network science, net.science
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Award ID(s):
1916805
Publication Date:
NSF-PAR ID:
10199455
Journal Name:
Gateways Conference 2020
Sponsoring Org:
National Science Foundation
More Like this
  1. Scientists in disciplines such as neuroscience and bioinformatics are increasingly relying on science gateways for experimentation on voluminous data, as well as analysis and visualization in multiple perspectives. Though current science gateways provide easy access to computing resources, datasets and tools specific to the disciplines, scientists often use slow and tedious manual efforts to perform knowledge discovery to accomplish their research/education tasks. Recommender systems can provide expert guidance and can help them to navigate and discover relevant publications, tools, data sets, or even automate cloud resource configurations suitable for a given scientific task. To realize the potential of integration ofmore »recommenders in science gateways in order to spur research productivity,we present a novel “OnTimeRecommend" recommender system. The OnTimeRecommend comprises of several integrated recommender modules implemented as microservices that can be augmented to a science gateway in the form of a recommender-as-a-service. The guidance for use of the recommender modules in a science gateway is aided by a chatbot plug-in viz., Vidura Advisor. To validate our OnTimeRecommend, we integrate and show benefits for both novice and expert users in domain-specific knowledge discovery within two exemplar science gateways, one in neuroscience (CyNeuro) and the other in bioinformatics (KBCommons).« less
  2. Science and engineering applications are now generating data at an unprecedented rate. From large facilities such as the Large Hadron Collider to portable DNA sequencing devices, these instruments can produce hundreds of terabytes in short periods of time. Researchers and other professionals rely on networks to transfer data between sensing locations, instruments, data storage devices, and computing systems. While general-purpose networks, also referred to as enterprise networks, are capable of transporting basic data, such as e-mails and Web content, they face numerous challenges when transferring terabyte- and petabyte-scale data. At best, transfers of science data on these networks may lastmore »days or even weeks. In response to this challenge, the Science Demilitarized Zone (Science DMZ) has been proposed. The Science DMZ is a network or a portion of a network designed to facilitate the transfer of big science data. The main elements of the Science DMZ include: 1) specialized end devices, referred to as data transfer nodes (DTNs), built for sending/receiving data at a high speed over wide area networks; 2) high-throughput, friction-free paths connecting DTNs, instruments, storage devices, and computing systems; 3) performance measurement devices to monitor end-to-end paths over multiple domains; and 4) security policies and enforcement mechanisms tailored for high-performance environments. Despite the increasingly important role of Science DMZs, the literature is still missing a guideline to provide researchers and other professionals with the knowledge to broaden the understanding and development of Science DMZs. This paper addresses this gap by presenting a comprehensive tutorial on Science DMZs. The tutorial reviews fundamental network concepts that have a large impact on Science DMZs, such as router architecture, TCP attributes, and operational security. Then, the tutorial delves into protocols and devices at different layers, from the physical cyberinfrastructure to application-layer tools and security appliances, that must be carefully considered for the optimal operation of Science DMZs. This paper also contrasts Science DMZs with general-purpose networks, and presents empirical results and use cases applicable to current and future Science DMZs.« less
  3. Large scientific facilities are unique and complex infrastructures that have become fundamental instruments for enabling high quality, world-leading research to tackle scientific problems at unprecedented scales. Cyberinfrastructure (CI) is an essential component of these facilities, providing the user community with access to data, data products, and services with the potential to transform data into knowledge. However, the timely evolution of the CI available at large facilities is challenging and can result in science communities requirements not being fully satisfied. Furthermore, integrating CI across multiple facilities as part of a scientific workflow is hard, resulting in data silos. In this paper,more »we explore how science gateways can provide improved user experiences and services that may not be offered at large facility datacenters. Using a science gateway supported by the Science Gateway Community Institute, which provides subscription-based delivery of streamed data and data products from the NSF Ocean Observatories Initiative (OOI), we propose a system that enables streaming-based capabilities and workflows using data from large facilities, such as the OOI, in a scalable manner. We leverage data infrastructure building blocks, such as the Virtual Data Collaboratory, which provides data and comput- ing capabilities in the continuum to efficiently and collaboratively integrate multiple data-centric CIs, build data-driven workflows, and connect large facilities data sources with NSF-funded CI, such as XSEDE. We also introduce architectural solutions for running these workflows using dynamically provisioned federated CI.« less
  4. Abstract Science Gateways provide an easily accessible and powerful computing environment for researchers. These are built around a set of software tools that are frequently and heavily used by large number of researchers in specific domains. Science Gateways have been catering to a growing need of researchers for easy to use computational tools, however their usage model is typically single user-centric. As scientific research becomes ever more team oriented, the need driven by user-demand to support integrated collaborative capabilities in Science Gateways is natural progression. Ability to share data/results with others in an integrated manner is an important and frequentlymore »requested capability. In this article we will describe and discuss our work to provide a rich environment for data organization and data sharing by integrating the SeedMeLab (formerly SeedMe2) platform with two Science Gateways: CIPRES and GenApp. With this integration we also demonstrate SeedMeLab’s extensible features and how Science Gateways may incorporate and realize FAIR data principles in practice and transform into community data hubs.« less
  5. The management of security credentials (e.g., passwords, secret keys) for computational science workflows is a burden for scientists and information security officers. Problems with credentials (e.g., expiration, privilege mismatch) cause workflows to fail to fetch needed input data or store valuable scientific results, distracting scientists from their research by requiring them to diagnose the problems, re-run their computations, and wait longer for their results. SciTokens introduces a capabilities-based authorization infrastructure for distributed scientific computing, to help scientists manage their security credentials more reliably and securely. SciTokens uses IETF-standard OAuth JSON Web Tokens for capability-based secure access to remote scientific data.more »These access tokens convey the specific authorizations needed by the workflows, rather than general-purpose authentication impersonation credentials, to address the risks of scientific workflows running on distributed infrastructure including NSF resources (e.g., LIGO Data Grid, Open Science Grid, XSEDE) and public clouds (e.g., Amazon Web Services, Google Cloud, Microsoft Azure). By improving the interoperability and security of scientific workflows, SciTokens 1) enables use of distributed computing for scientific domains that require greater data protection and 2) enables use of more widely distributed computing resources by reducing the risk of credential abuse on remote systems. In this extended abstract, we present the results over the past year of our open source implementation of the SciTokens model and its deployment in the Open Science Grid, including new OAuth support added in the HTCondor 8.8 release series.« less