skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Topological nanospaser
Abstract We propose a nanospaser made of an achiral plasmonic–metal nanodisk and a two-dimensional chiral gain medium – a monolayer nanoflake of a transition-metal dichalcogenide (TMDC). When one valley of the TMDC is selectively pumped (e.g. by a circular-polarized radiation), the spaser (surface plasmon amplification by stimulated emission of radiation) generates a mode carrying a topological chiral charge that matches that of the gain valley. There is another, chirally mismatched, time-reversed mode with exactly the same frequency but the opposite topological charge; it is actively suppressed by the gain saturation and never generates, leading to a strong topological protection for the generating matched mode. This topological spaser is promising for use in nano-optics and nanospectroscopy in the near field especially in applications to biomolecules that are typically chiral. Another potential application is a chiral nanolabel for biomedical applications emitting in the far field an intense circularly polarized coherent radiation.  more » « less
Award ID(s):
1741691
PAR ID:
10200036
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nanophotonics
Volume:
9
Issue:
4
ISSN:
2192-8614
Page Range / eLocation ID:
865 to 874
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The valley degree of freedom that results from broken inversion symmetry in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) has sparked a lot of interest due to its huge potential in information processing. In this experimental work, to optically address the valley-polarized emission from three-layer (3 L) thick WS2at room temperature, we employ a SiN photonic crystal slab that has two sets of holes in a square lattice that supports directional circular dichroism engendered by delocalized guided mode resonances. By perturbatively breaking the inversion symmetry of the photonic crystal slab, we can simultaneously manipulate s and p components of the radiating field so that these resonances correspond to circularly polarized emission. The emission of excitons from distinct valleys is coupled into different radiative channels and hence separated in the farfield. This directional exciton emission from selective valleys provides a potential route for valley-polarized light emitters, which lays the groundwork for future valleytronic devices. 
    more » « less
  2. Monolayer molybdenum di-selenide (1L-MoSe 2 ) stands out in the transition metal dichalcogenide family of materials as an outlier where optical generation of valley polarization is inefficient. Here we show that using charge doping in conjunction with an external magnetic field, the valley polarization of 1L-MoSe 2 can be controlled effectively. Most remarkably, the valley polarization can be tuned to negative values, where the higher energy Zeeman mode emission is more intense than the lower energy one. Our experimental observations are interpreted with valley-selective exciton-charge dressing that manifests when gate induced doping populates predominantly one valley in the presence of Zeeman splitting. 
    more » « less
  3. Abstract The twisted stacking of two layered crystals has led to the emerging moiré physics as well as intriguing chiral phenomena such as chiral phonon and photon generation. In this work, we identified and theoretically formulated a non-trivial twist-enabled coupling mechanism in twisted bilayer photonic crystal (TBPC), which connects the bound state in the continuum (BIC) mode to the free space through the twist-enabled channel. Moreover, the radiation from TBPC hosts an optical vortex in the far field with both odd and even topological orders. We quantitatively analyzed the twist-enabled coupling between the BIC mode and other non-local modes in the photonic crystals, giving rise to radiation carrying orbital angular momentum. The optical vortex generation is robust against geometric disturbance, making TBPC a promising platform for well-defined vortex generation. As a result, TBPCs not only provide a new approach to manipulating the angular momentum of photons, but may also enable novel applications in integrated optical information processing and optical tweezers. Our work broadens the field of moiré photonics and paves the way toward the novel application of moiré physics. 
    more » « less
  4. null (Ed.)
    Abstract Spin-valley locking in monolayer transition metal dichalcogenides has attracted enormous interest, since it offers potential for valleytronic and optoelectronic applications. Such an exotic electronic state has sparsely been seen in bulk materials. Here, we report spin-valley locking in a Dirac semimetal BaMnSb 2 . This is revealed by comprehensive studies using first principles calculations, tight-binding and effective model analyses, angle-resolved photoemission spectroscopy measurements. Moreover, this material also exhibits a stacked quantum Hall effect (QHE). The spin-valley degeneracy extracted from the QHE is close to 2. This result, together with the Landau level spin splitting, further confirms the spin-valley locking picture. In the extreme quantum limit, we also observed a plateau in the z -axis resistance, suggestive of a two-dimensional chiral surface state present in the quantum Hall state. These findings establish BaMnSb 2 as a rare platform for exploring coupled spin and valley physics in bulk single crystals and accessing 3D interacting topological states. 
    more » « less
  5. Abstract Nanohybrids based on van der Waals (vdW) heterostructures of two dimensional (2D) atomic materials have recently emerged as a unique scheme for designing high‐performance quantum sensors. This work explores vdW nanohybrids for photodetection, which consist of graphene decorated with intermingled transition‐metal dichalcogenide (TMDC) nanodiscs (TMDC‐NDs) obtained using wafer‐size, layer‐by‐layer growth. The obtained TMDC‐NDs/graphene nanohybrids take advantage of strong quantum confinement in graphene for high charge mobility and hence high photoconductive gain, and localized surface plasmonic resonance (LSPR) enabled on the TMDC‐NDs for enhanced light absorption. Since the LSPR depends on the nanostructure's size and density, intermingled TMDC‐NDs of different kinds of TMDCs, such as WS2(W) and MoS2(M), have been found to allow small‐size, high‐concentration TMDC‐NDs to be achieved for high photoresponse. Remarkably, high photoresponsivity up to 31 A/W (550 nm wavelength and 20 µW cm−2light intensity) has been obtained on the WMW‐NDs/graphene nanohybrids photodetectors made using three consecutive coatings of WS2(1st and 3rd coating) and MoS2(2nd coating), which is considerably higher by a factor of ≈4 than that of the counterparts MoS2‐ND/graphene or WS2‐NDs/graphene devices. This result provides a facile approach to control the size and concentration of the TMDC‐NDs for high‐performance, low‐cost optoelectronic device applications. 
    more » « less