skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structural and electronic switching of a single crystal 2D metal-organic framework prepared by chemical vapor deposition
Abstract The incorporation of metal-organic frameworks into advanced devices remains a desirable goal, but progress is hindered by difficulties in preparing large crystalline metal-organic framework films with suitable electronic performance. We demonstrate the direct growth of large-area, high quality, and phase pure single metal-organic framework crystals through chemical vapor deposition of a dimolybdenum paddlewheel precursor, Mo2(INA)4. These exceptionally uniform, high quality crystals cover areas up to 8600 µm2and can be grown down to thicknesses of 30 nm. Moreover, scanning tunneling microscopy indicates that the Mo2(INA)4clusters assemble into a two-dimensional, single-layer framework. Devices are readily fabricated from single vapor-phase grown crystals and exhibit reversible 8-fold changes in conductivity upon illumination at modest powers. Moreover, we identify vapor-induced single crystal transitions that are reversible and responsible for 30-fold changes in conductivity of the metal-organic framework as monitored by in situ device measurements. Gas-phase methods, including chemical vapor deposition, show broader promise for the preparation of high-quality molecular frameworks, and may enable their integration into devices, including detectors and actuators.  more » « less
Award ID(s):
1848046
PAR ID:
10200142
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Scalable synthesis of two-dimensional molybdenum disulfide (MoS 2 ) via chemical vapor deposition (CVD) is of considerable interests for many applications in electronics and optoelectronics. Here, we investigate the CVD growth of MoS 2 single crystals on sapphire substrates by using thermally evaporated molybdenum trioxide (MoO 3 ) thin films as molybdenum (Mo) source instead of conventionally used MoO 3 powder for co-evaporation synthesis. The MoO 3 thin film source provides uniform Mo vapor pressure in the growth chamber resulting in clean and reproducible MoS 2 triangles without any oxide or oxysulfide species. Scanning electron microscopy, Raman spectroscopy, photoluminescence spectroscopy and atomic force microscopy characterization were performed to characterize the growth results. Very high photoluminescence (PL) response was observed at 1.85 eV which is a good implication of high optical quality of these crystals directly grown on sapphire substrate. 
    more » « less
  2. ABSTRACT The synthesis of two‐dimensional transition metal dichalcogenide (2D‐TMD) materials gives rise to inherent defects, specifically chalcogen vacancies, due to thermodynamic equilibrium. Techniques such as chemical vapor deposition (CVD), metal‐organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), flux growth method, and mechanical exfoliation produce large‐scale, uniform 2D TMD films, either in bulk or monolayers. However, defects on the film surface impact its quality, and it is necessary to measure defect density. The phonon confinement model indicates that the first‐order Raman band frequency shift depends on defect density. Monolayer Molybdenum disulfide (MoS2) exhibits three phonon dispersions at the Brillouin zone edge (M point): out‐of‐plane optical phonon vibration (ZO), in‐plane longitudinal optical phonon vibration (LO), and in‐plane transverse optical phonon vibration (TO). The LO and ZO modes overlap with Raman in‐plane vibration (𝐸12g) and Raman out‐of‐plane vibration (𝐴1g), respectively, causing peak broadening. In the presence of defects, the Raman 𝐸12gvibration energy decreases due to a reduced restoring force constant. The Raman 𝐴1gvibration trend is random, influenced by both restoring force constant and mass. The study introduces a quantitative defect measurement technique for CVD‐grown monolayer MoS2using Raman 𝐸12gmode, employing sequential data processing algorithms to reveal defect density on the film surface. 
    more » « less
  3. Abstract Process chemical potential control and dislocation reduction were implemented to control oxygen concentration in N-polar GaN layers grown on sapphire substrates via metal organic chemical vapor deposition (MOCVD). As process supersaturation was changed from ∼30 to 3400, the formation energy of the oxygen point defect increased, which resulted in a 25-fold decrease in oxygen incorporation. Reducing dislocations by approximately a factor of 4 (to ∼10 9 cm −3 ) allowed for further reduction of oxygen incorporation to the low-10 17 cm −3 range. Smooth N-polar GaN layers with low oxygen content were achieved by a two-step process, whereas first a 1 µ m thick smooth N-polar layer with high oxygen concentration was grown, followed by low oxygen concentration layer grown at high supersaturation. 
    more » « less
  4. Atomically thin 2D transition metal dichalcogenides (TMDs), such as MoS2, are promising candidates for nanoscale photonics because of strong light–matter interactions. However, Fermi‐level pinning due to metal‐induced gap states (MIGS) at the metal–monolayer (1L)‐MoS2interface limits the application of optoelectronic devices based on conventional metals due to high contact resistance. On the other hand, a semimetal–TMD–semimetal device can overcome this limitation, where the MIGS are sufficiently suppressed allowing ohmic contacts. Herein, the optoelectronic performance of a bismuth–1L‐MoS2–bismuth device with ohmic electrical contacts and extraordinary optoelectronic properties is demonstrated. To address the wafer‐scale production, full coverage 1L‐MoS2grown by chemical vapor deposition. High photoresponsivity of 300 A W−1at wavelength 400 nm measured at 77 K, which translates into an external quantum efficiency (EQE) ≈1000 or 105%, is measured. The 90% rise time of the devices at 77 K is 0.1 ms, suggesting they can operate at the speed of ≈10 kHz. High‐performance broadband photodetector with spectral coverage ranging from 380 to 1000 nm is demonstrated. The combination of large‐array device fabrication, high sensitivity, and high‐speed response offers great potential for applications in photonics, including integrated optoelectronic circuits. 
    more » « less
  5. The emerging optoelectronic material family of transition metal dichalcogenides may be useful in flexible electronics. However, only MoS2 has been grown directly as thin films on polymer substrates, owing in part to the high deposition temperatures typically required to prepare these materials. Changing vapor deposition chemistry can allow much lower film growth temperatures. We show that when using tetrakis(dimethylamido)zirconium(IV), Zr(NMe2)4, and H2S as precursors, low-temperature chemical vapor deposition affords films of zirconium(IV) sulfide (ZrS2) directly on polymer substrates. Stoichiometric and crystalline ZrS2 films can be deposited with good adhesion on polyimide (Kapton) and polyether ether ketone (PEEK) substrates at 150–200 °C. The films deposited on polydimethylsiloxane (PDMS) substrates were stoichiometric and crystalline, but not well adhered. Films on all substrates were polycrystalline with small (20–30 nm) grains, highly oriented in the [001] direction of the 1T ZrS2 phase. The films grown on PEEK have resistivities ca. 625 Ω cm, two orders of magnitude higher than ZrS2 films deposited at 800–1000 °C from ZrCl4 and sulfur. The films grown on Kapton are similarly conductive, whereas films on PDMS are not conductive. 
    more » « less