skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bringing Order to Network Embedding: A Relative Ranking based Approach
Network embedding aims to automatically learn the node representations in networks. The basic idea of network embedding is to first construct a network to describe the neighborhood context for each node, and then learn the node representations by designing an objective function to preserve certain properties of the constructed context network. The vast majority of the existing methods, explicitly or implicitly, follow a pointwise design principle. That is, the objective can be decomposed into the summation of the certain goodness function over each individual edge of the context network. In this paper, we propose to go beyond such pointwise approaches, and introduce the ranking-oriented design principle for network embedding. The key idea is to decompose the overall objective function into the summation of a goodness function over a set of edges to collectively preserve their relative rankings on the context network. We instantiate the ranking-oriented design principle by two new network embedding algorithms, including a pairwise network embedding method PaWine which optimizes the relative weights of edge pairs, and a listwise method LiWine which optimizes the relative weights of edge lists. Both proposed algorithms bear a linear time complexity, making themselves scalable to large networks. We conduct extensive experimental evaluations on five real datasets with a variety of downstream learning tasks, which demonstrate that the proposed approaches consistently outperform the existing methods.  more » « less
Award ID(s):
1939725 1947135
PAR ID:
10200360
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
CIKM'20
Page Range / eLocation ID:
1585 to 1594
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Network embedding has attracted a surge of attention in recent years. It is to learn the low-dimensional representation for nodes in a network, which benefits downstream tasks such as node classification and link prediction. Most of the existing approaches learn node representations only based on the topological structure, yet nodes are often associated with rich attributes in many real-world applications. Thus, it is important and necessary to learn node representations based on both the topological structure and node attributes. In this paper, we propose a novel deep attributed network embedding approach, which can capture the high non-linearity and preserve various proximities in both topological structure and node attributes. At the same time, a novel strategy is proposed to guarantee the learned node representation can encode the consistent and complementary information from the topological structure and node attributes. Extensive experiments on benchmark datasets have verified the effectiveness of our proposed approach. 
    more » « less
  2. Networked data involve complex information from multifaceted channels, including topology structures, node content, and/or node labels etc., where structure and content are often correlated but are not always consistent. A typical scenario is the citation relationships in scholarly publications where a paper is cited by others not because they have the same content, but because they share one or multiple subject matters. To date, while many network embedding methods exist to take the node content into consideration, they all consider node content as simple flat word/attribute set and nodes sharing connections are assumed to have dependency with respect to all words or attributes. In this paper, we argue that considering topic-level semantic interactions between nodes is crucial to learn discriminative node embedding vectors. In order to model pairwise topic relevance between linked text nodes, we propose topical network embedding, where interactions between nodes are built on the shared latent topics. Accordingly, we propose a unified optimization framework to simultaneously learn topic and node representations from the network text contents and structures, respectively. Meanwhile, the structure modeling takes the learned topic representations as conditional context under the principle that two nodes can infer each other contingent on the shared latent topics. Experiments on three real-world datasets demonstrate that our approach can learn significantly better network representations, i.e., 4.1% improvement over the state-of-the-art methods in terms of Micro-F1 on Cora dataset. (The source code of the proposed method is available through the github link: https:// github.com/codeshareabc/TopicalNE.) 
    more » « less
  3. Attributed network embedding aims to learn lowdimensional vector representations for nodes in a network, where each node contains rich attributes/features describing node content. Because network topology structure and node attributes often exhibit high correlation, incorporating node attribute proximity into network embedding is beneficial for learning good vector representations. In reality, large-scale networks often have incomplete/missing node content or linkages, yet existing attributed network embedding algorithms all operate under the assumption that networks are complete. Thus, their performance is vulnerable to missing data and suffers from poor scalability. In this paper, we propose a Scalable Incomplete Network Embedding (SINE) algorithm for learning node representations from incomplete graphs. SINE formulates a probabilistic learning framework that separately models pairs of node-context and node-attribute relationships. Different from existing attributed network embedding algorithms, SINE provides greater flexibility to make the best of useful information and mitigate negative effects of missing information on representation learning. A stochastic gradient descent based online algorithm is derived to learn node representations, allowing SINE to scale up to large-scale networks with high learning efficiency. We evaluate the effectiveness and efficiency of SINE through extensive experiments on real-world networks. Experimental results confirm that SINE outperforms state-of-the-art baselines in various tasks, including node classification, node clustering, and link prediction, under settings with missing links and node attributes. SINE is also shown to be scalable and efficient on large-scale networks with millions of nodes/edges and high-dimensional node features. 
    more » « less
  4. Node embedding is the task of extracting concise and informative representations of certain entities that are connected in a network. Various real-world networks include information about both node connectivity and certain node attributes, in the form of features or time-series data. Modern representation learning techniques employ both the connectivity and attribute information of the nodes to produce embeddings in an unsupervised manner. In this context, deriving embeddings that preserve the geometry of the network and the attribute vectors would be highly desirable, as they would reflect both the topological neighborhood structure and proximity in feature space. While this is fairly straightforward to maintain when only observing the connectivity or attribute information of the network, preserving the geometry of both types of information is challenging. A novel tensor factorization approach for node embedding in attributed networks is proposed in this paper, that preserves the distances of both the connections and the attributes. Furthermore, an effective and lightweight algorithm is developed to tackle the learning task and judicious experiments with multiple state-of-the-art baselines suggest that the proposed algorithm offers significant performance improvements in downstream tasks. 
    more » « less
  5. Network embedding, which learns the low-dimensional representations of nodes, has gained significant research attention. Despite its superior empirical success, often measured by the prediction performance of downstream tasks (e.g., multi-label classification), it is unclear why a given embedding algorithm outputs the specific node representations, and how the resulting node representations relate to the structure of the input network. In this paper, we propose to discern the edge influence as the first step towards understanding skip-gram basd network embedding methods. For this purpose, we propose an auditing framework NEAR, whose key part includes two algorithms (NEAR-ADD and NEAR-DEL) to effectively and efficiently quantify the influence of each edge. Based on the algorithms, we further identify high-influential edges by exploiting the linkage between edge influence and the network structure. Experimental results demonstrate that the proposed algorithms (NEAR-ADD and NEAR-DEL) are significantly faster (up to 2, 000×) than straightforward methods with little quality loss. Moreover, the proposed framework can efficiently identify the most influential edges for network embedding in the context of downstream prediction task and adversarial attacking. 
    more » « less