skip to main content


Title: Establishment of AIRS climate-level radiometric stability using radiance anomaly retrievals of minor gases and sea surface temperature
Abstract. Temperature, H2O, and O3 profiles, as well as CO2, N2O, CH4, chlorofluorocarbon-12 (CFC-12), and sea surface temperature (SST) scalar anomalies are computed using a clear subset of AIRS observations over ocean for the first 16 years of NASA's Earth-Observing Satellite (EOS) Aqua Atmospheric Infrared Sounder (AIRS) operation. The AIRS Level-1c radiances are averaged over 16 d and 40 equal-area zonal bins and then converted to brightness temperature anomalies. Geophysical anomalies are retrieved from the brightness temperature anomalies using a relatively standard optimal estimation approach. The CO2, N2O, CH4, and CFC-12 anomalies are derived by applying a vertically uniform multiplicative shift to each gas in order to obtain an estimate for the gas mixing ratio. The minor-gas anomalies are compared to the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) in situ values and used to estimate the radiometric stability of the AIRS radiances. Similarly, the retrieved SST anomalies are compared to the SST values used in the ERA-Interim reanalysis and to NOAA's Optimum Interpolation SST (OISST) product. These intercomparisons strongly suggest that many AIRS channels are stable to better than 0.02 to 0.03 K per decade, well below climate trend levels, indicating that the AIRS blackbody is not drifting. However, detailed examination of the anomaly retrieval residuals (observed – computed) shows various small unphysical shifts that correspond to AIRS hardware events (shutdowns, etc.). Some examples are given highlighting how the AIRS radiance stability could be improved, especially for channels sensitive to N2O and CH4. The AIRS shortwave channels exhibit larger drifts that make them unsuitable for climate trending, and they are avoided in this work. The AIRS Level 2 surface temperature retrievals only use shortwave channels. We summarize how these shortwave drifts impacts recently published comparisons of AIRS surface temperature trends to other surface climatologies.  more » « less
Award ID(s):
1726023
NSF-PAR ID:
10200869
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
13
Issue:
9
ISSN:
1867-8548
Page Range / eLocation ID:
4619 to 4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. To track progress towards keeping global warming well below 2 ∘C or even 1.5 ∘C, as agreed in the Paris Agreement, comprehensiveup-to-date and reliable information on anthropogenic emissions and removalsof greenhouse gas (GHG) emissions is required. Here we compile a new synthetic dataset on anthropogenic GHG emissions for 1970–2018 with afast-track extension to 2019. Our dataset is global in coverage and includesCO2 emissions, CH4 emissions, N2O emissions, as well as those from fluorinated gases (F-gases: HFCs, PFCs, SF6, NF3) andprovides country and sector details. We build this dataset from the version 6 release of the Emissions Database for Global Atmospheric Research (EDGAR v6) and three bookkeeping models for CO2 emissions from land use,land-use change, and forestry (LULUCF). We assess the uncertainties of global greenhouse gases at the 90 % confidence interval (5th–95thpercentile range) by combining statistical analysis and comparisons ofglobal emissions inventories and top-down atmospheric measurements with anexpert judgement informed by the relevant scientific literature. We identifyimportant data gaps for F-gas emissions. The agreement between our bottom-up inventory estimates and top-downatmospheric-based emissions estimates is relatively close for some F-gasspecies (∼ 10 % or less), but estimates can differ by an order of magnitude or more for others. Our aggregated F-gas estimate is about 10 % lower than top-down estimates in recent years. However, emissions from excluded F-gas species such aschlorofluorocarbons (CFCs) or hydrochlorofluorocarbons (HCFCs) arecumulatively larger than the sum of the reported species. Using globalwarming potential values with a 100-year time horizon from the Sixth Assessment Report by the Intergovernmental Panel on Climate Change (IPCC),global GHG emissions in 2018 amounted to 58 ± 6.1 GtCO2 eq.consisting of CO2 from fossil fuel combustion and industry (FFI) 38 ± 3.0 GtCO2, CO2-LULUCF 5.7 ± 4.0 GtCO2, CH4 10 ± 3.1 GtCO2 eq., N2O2.6 ± 1.6 GtCO2 eq., and F-gases 1.3 ± 0.40 GtCO2 eq. Initial estimates suggest further growth of 1.3 GtCO2 eq. in GHG emissions to reach 59 ± 6.6 GtCO2 eq. by 2019. Our analysis ofglobal trends in anthropogenic GHG emissions over the past 5 decades (1970–2018) highlights a pattern of varied but sustained emissions growth. There is high confidence that global anthropogenic GHG emissions haveincreased every decade, and emissions growth has been persistent across the different (groups of) gases. There is also high confidence that globalanthropogenic GHG emissions levels were higher in 2009–2018 than in any previous decade and that GHG emissions levels grew throughout the most recent decade. While the average annual GHG emissions growth rate slowed between2009 and 2018 (1.2 % yr−1) compared to 2000–2009 (2.4 % yr−1), the absolute increase in average annual GHG emissions by decade was neverlarger than between 2000–2009 and 2009–2018. Our analysis further revealsthat there are no global sectors that show sustained reductions in GHGemissions. There are a number of countries that have reduced GHG emissionsover the past decade, but these reductions are comparatively modest andoutgrown by much larger emissions growth in some developing countries suchas China, India, and Indonesia. There is a need to further develop independent, robust, and timely emissions estimates across all gases. As such, tracking progress in climate policy requires substantial investmentsin independent GHG emissions accounting and monitoring as well as in national and international statistical infrastructures. The data associatedwith this article (Minx et al., 2021) can be found at https://doi.org/10.5281/zenodo.5566761. 
    more » « less
  2. Abstract. One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR) satellite sounders use cloud-cleared radiances (CCRs) as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2–4 degrees of freedom (DOFs) of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP) models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA). The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds). From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90%, while the degrees of freedom correlate with the observed window channel brightness temperature (BT) which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO) cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS) and NWP thermodynamic and cloud profiles from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model are used in this paper.

     
    more » « less
  3. Abstract. Since 1999, Environment and Climate Change Canada (ECCC) has been coordinating a multi-laboratory comparison of measurements of long-lived greenhouse gases in whole air samples collected at the Global Atmosphere Watch (GAW) Alert Observatory located in the Canadian High Arctic (82∘28′ N, 62∘30′ W). In this paper, we evaluate the measurement agreement of atmospheric CO2, CH4, N2O, SF6, and stable isotopes of CO2 (δ13C, δ18O) between leading laboratories from seven independent international institutions. The measure of success is linked to target goals for network compatibility outlined by the World Meteorological Organization's (WMO) GAW greenhouse gas measurement community. Overall, based on ∼ 8000 discrete flask samples, we find that the co-located atmospheric CO2 and CH4 measurement records from Alert by CSIRO, MPI-BGC, SIO, UHEI-IUP, and ECCC versus NOAA (the designated reference laboratory) are generally consistent with the WMO compatibility goals of ± 0.1 ppm CO2 and ± 2 ppb CH4 over the 17-year period (1999–2016), although there are periods where differences exceed target levels and persist as systematic bias for months or years. Consistency with the WMO goals for N2O, SF6, and stable isotopes of CO2 (δ13C, δ18O) has not been demonstrated. Additional analysis of co-located comparison measurements between CSIRO and SIO versus NOAA or INSTAAR (for the isotopes of CO2) at other geographical sites suggests that the findings at Alert for CO2, CH4, N2O, and δ13C–CO2 could be extended across the CSIRO, SIO, and NOAA observing networks. The primary approach to estimate an overall measurement agreement level was carried out by pooling the differences of all individual laboratories versus the designated reference laboratory and determining the 95th percentile range of these data points. Using this approach over the entire data record, our best estimate of the measurement agreement range is −0.51 to +0.53 ppm for CO2, −0.09 ‰ to +0.07 ‰ for δ13C, −0.50 ‰ to +0.58 ‰ for δ18O, −4.86 to +6.16 ppb for CH4, −0.75 to +1.20 ppb for N2O, and −0.14 to +0.09 ppt for SF6. A secondary approach of using the average of 2 standard deviations of the means for all flask samples taken in each individual sampling episode provided similar results. These upper and lower limits represent our best estimate of the measurement agreement at the 95 % confidence level for these individual laboratories, providing more confidence for using these datasets in various scientific applications (e.g., long-term trend analysis).

     
    more » « less
  4. Abstract

    Ocean‐atmosphere dynamics in the north Pacific play an important role in the global climate system and influence hydroclimate in western North America. However, changes to this region's mean climate under increased atmospheric greenhouse gas concentrations are not well understood. Here we present new alkenone‐based records of sea surface temperature (SST) from the northeast Pacific from the mid‐Piacenzian warm period (approximately 3.3–3.0 Ma), an interval considered to be an analog for near‐future climate under middle‐of‐the‐road anthropogenic emissions. We compare these and other alkenone‐based SST records from the north Pacific to fully‐coupled climate model simulations to examine the impact of mid‐Pliocene CO2and other boundary conditions on regional climate dynamics and to explore factors governing model disagreement about regional temperature patterns. Model performance varies regionally, with Community Earth System Model 1.2 (CESM 1.2) and CESM2 performing best in regions with greater warming like the California Margin, though these models underestimate the warming evidenced in our new proxy record and others from the region. Single forcing simulations reveal a strong influence for prescribed land surface changes and higher CO2levels on coastal warming patterns along the California Margin in CESM2. Furthermore, differences in shortwave and longwave radiation and circulation between the models, likely related to changes in the atmospheric component of the model, may play a key role in the ability of models to capture regionally‐varying patterns of Pliocene warmth. Regional patterns of temperature change inferred from geochemical records could therefore help to understand the impacts of different model parameterization schemes on regional climate patterns.

     
    more » « less
  5. null (Ed.)
    Abstract. The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many challenges for climate modellers but is also key to understanding the events leading towards the conditions needed for Antarctic glaciation at the Eocene–Oligocene transition. Here, we present the results of CMIP5-like coupled climate simulations using the Community Earth System Model (CESM) version 1. Using a new detailed 38 Ma geography reconstruction and higher model resolution compared to most previous modelling studies and sufficiently long equilibration times, these simulations will help to further understand the middle to late Eocene climate. At realistic levels of atmospheric greenhouse gases, the model is able to show overall good agreement with proxy records and capture the important aspects of a warm greenhouse climate during the Eocene. With a quadrupling of pre-industrial concentrations of both CO2 and CH4 (i.e. 1120 ppm and ∼2700 ppb, respectively, or 4 × PIC; pre-industrial carbon), sea surface temperatures correspond well to the available late middle Eocene (42–38 Ma; ∼ Bartonian) proxies. Being generally cooler, the simulated climate under 2 × PIC forcing is a good analogue for that of the late Eocene (38–34 Ma; ∼ Priabonian). Terrestrial temperature proxies, although their geographical coverage is sparse, also indicate that the results presented here are in agreement with the available information. Our simulated middle to late Eocene climate has a reduced Equator-to-pole temperature gradient and a more symmetric meridional heat distribution compared to the pre-industrial reference. The collective effects of geography, vegetation, and ice account for a global average 5–7 ∘C difference between pre-industrial and 38 Ma Eocene boundary conditions, with important contributions from cloud and water vapour feedbacks. This helps to explain Eocene warmth in general, without the need for greenhouse gas levels much higher than indicated by proxy estimates (i.e. ∼500–1200 ppm CO2) or low-latitude regions becoming unreasonably warm. High-latitude warmth supports the idea of mostly ice-free polar regions, even at 2 × PIC, with Antarctica experiencing particularly warm summers. An overall wet climate is seen in the simulated Eocene climate, which has a strongly monsoonal character. Equilibrium climate sensitivity is reduced (0.62 ∘C W−1 m2; 3.21 ∘C warming between 38 Ma 2 × PIC and 4 × PIC) compared to that of the present-day climate (0.80 ∘C W−1 m2; 3.17 ∘C per CO2 doubling). While the actual warming is similar, we see mainly a higher radiative forcing from the second PIC doubling. A more detailed analysis of energy fluxes shows that the regional radiative balance is mainly responsible for sustaining a low meridional temperature gradient in the Eocene climate, as well as the polar amplification seen towards even warmer conditions. These model results may be useful to reconsider the drivers of Eocene warmth and the Eocene–Oligocene transition (EOT) but can also be a base for more detailed comparisons to future proxy estimates. 
    more » « less