skip to main content


Title: Radar-Based Non-Contact Continuous Identity Authentication
Non-contact vital signs monitoring using microwave Doppler radar has shown great promise in healthcare applications. Recently, this unobtrusive form of physiological sensing has also been gaining attention for its potential for continuous identity authentication, which can reduce the vulnerability of traditional one-pass validation authentication systems. Physiological Doppler radar is an attractive approach for continuous identity authentication as it requires neither contact nor line-of-sight and does not give rise to privacy concerns associated with video imaging. This paper presents a review of recent advances in radar-based identity authentication systems. It includes an evaluation of the applicability of different research efforts in authentication using respiratory patterns and heart-based dynamics. It also identifies aspects of future research required to address remaining challenges in applying unobtrusive respiration-based or heart-based identity authentication to practical systems. With the advancement of machine learning and artificial intelligence, radar-based continuous authentication can grow to serve a wide range of valuable functions in society.  more » « less
Award ID(s):
1915738
NSF-PAR ID:
10201701
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
12
Issue:
14
ISSN:
2072-4292
Page Range / eLocation ID:
2279
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Radar is an attractive approach for identity authentication because it requires no contact and is unobtrusive. Most reported results have focused only on sedentary breathing patterns, without considering how respiratory patterns may change due to physiological activities or emotional stress. In this research the feasibility of extracting identifying features from radar respiratory traces was tested, for sedentary subject conditions as well as just after performing physiological activities (walking upstairs). Respiratory breathing dynamics related features (breathing rate, spectral entropy, breathing depth, inhale/exhale area ratio, mean and standard deviation of the peaks) were extracted from radar captured respiration patterns, and variations in feature parameters after physiological activities were assessed. Experimental results demonstrated that, after short exertions dynamically segmented respiratory pattern exhale area and breathing depth increased by more than 1.4 times for all participants, which made evident the uniqueness of residual heart volume after expiration for recognizing each subject even after short exertions. Our proposed approach is also integrated with a Support Vector Machine (SVM) with a radial basis function kernel to demonstrate an identification success rate of almost 98.55% for sedentary-only conditions and almost 92% for a combined mixture of conditions (sedentary and after short exertion). While the efficacy was reduced, the method still shows significant potential. The proposed identity authentication approach has several potential applications including security/surveillance, IOT applications, virtual reality and health monitoring as well. 
    more » « less
  2. Many individuals suffer from ailments such hypertension that require frequent health monitoring. Unfortunately, current technology does not possess the ability for unobtrusive, continuous monitoring. This paper proposes estimation of pulse pressure based on pulse transient time determined from one non-contact, and one contact sensor: Doppler radar for non-contact detection of heart beat, and piezoelectric finger pulse sensor. The time delay between heart beat and finger pulse was determined using MATLAB software, and pulse wave velocity (PWV) was calculated. Finally, subjects' pulse pressure estimated using PWV was found to be in good agreement with pulse pressure measured using an off the shelf sphygmomanometer by reading and taking difference of systolic and diastolic blood pressure. 
    more » « less
  3. Identity authentication based on Doppler radar respiration sensing is gaining attention as it requires neither contact nor line of sight and does not give rise to privacy concerns associated with video imaging. Prior research demonstrating the recognition of individuals has been limited to isolated single subject scenarios. When two equidistant subjects are present, identification is more challenging due to the interference of respiration motion patterns in the reflected radar signal. In this research, respiratory signature separation techniques are functionally combined with machine learning (ML) classifiers for reliable subject identity authentication. An improved version of the dynamic segmentation algorithm (peak search and triangulation) was proposed, which can extract distinguishable airflow profile-related features (exhale area, inhale area, inhale/exhale speed, and breathing depth) for medium-scale experiments of 20 different participants to examine the feasibility of extraction of an individual’s respiratory features from a combined mixture of motions for subjects. Independent component analysis with the joint approximation of diagonalization of eigenmatrices (ICA-JADE) algorithm was employed to isolate individual respiratory signatures from combined mixtures of breathing patterns. The extracted hyperfeature sets were then evaluated by integrating two different popular ML classifiers, k-nearest neighbor (KNN) and support vector machine (SVM), for subject authentication. Accuracies of 97.5% for two-subject experiments and 98.33% for single-subject experiments were achieved, which supersedes the performance of prior reported methods. The proposed identity authentication approach has several potential applications, including security/surveillance, the Internet-of- Things (IoT) applications, virtual reality, and health monitoring. 
    more » « less
  4. A number of algorithms have been developed to extract heart rate from physiological motion data using Doppler radar system. Yet, it is very challenging to eliminate noise associated with surroundings, especially with a single-channel Doppler radar system. However, single-channel Doppler radars provide the advantage of operating at lower power. Additionally, heart rate extraction using single-channel Doppler radar has remained somewhat unexplored. This has motivated the development of effective signal processing algorithms for signals received from single-channel Doppler radars. Three algorithms have been studied for estimating heart rate. The first algorithm is based on applying FFT on an FIR filtered signal. In the second algorithm, autocorrelation was performed on the filtered data. Thirdly, a peak finding algorithm was used in conjunction with a moving average preceded by a clipper to determine the heart rate. The results obtained were compared with heart rate readings from a pulse oximeter. With a mean difference of 2.6 bpm, the heart rate from Doppler radar matched that from the pulse oximeter most frequently when the peak finding algorithm was used. The results obtained using autocorrelation and peak finding algorithm (with standard deviations of 2.6 bpm and 4.0 bpm) suggest that a single channel Doppler radar system can be a viable alternative to contact heart rate monitors in patients for whom contact measurements are not feasible. 
    more » « less
  5. COVID-19, caused by SARS-CoV-2, is now a global pandemic disease. This outbreak has affected every aspect of life including work, leisure, and interaction with technology. Governments around the world have issued orders for travel bans, social distancing, and lockdown to control the spread of the virus and prevent strain on hospitals. This paper explores potential applications for radar-based non-contact remote respiration sensing technology that may help to combat the COVID-19 pandemic, and outlines potential advantages that may also help to reduce the spread of the virus. Applications arising from recent developments in the state of the art for transceiver and signal processing technologies will be discussed along associated technical implications. These applications include remote breathing rate monitoring, continuous identity authentication, occupancy detection, and hand gesture recognition. This paper also highlights future research directions that must be explored further to bring this innovative non-contact sensor technology into real-world implementation. 
    more » « less