skip to main content


Title: Automated Design of Robotic Hands for In-Hand Manipulation Tasks
Grasp planning and motion synthesis for dexterous manipulation tasks are traditionally done given a pre-existing kinematic model for the robotic hand. In this paper, we introduce a framework for automatically designing hand topologies best suited for manipulation tasks given high-level objectives as input. Our pipeline is capable of building custom hand designs around specific manipulation tasks based on high-level user input. Our framework comprises of a sequence of trajectory optimizations chained together to translate a sequence of objective poses into an optimized hand mechanism along with a physically feasible motion plan involving both the constructed hand and the object. We demonstrate the feasibility of this approach by synthesizing a series of hand designs optimized to perform specified in-hand manipulation tasks of varying difficulty. We extend our original pipeline 32 to accommodate the construction of hands suitable for multiple distinct manipulation tasks as well as provide an in depth discussion of the effects of each non-trivial optimization term.  more » « less
Award ID(s):
1637853
NSF-PAR ID:
10201822
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Journal of Humanoid Robotics
Volume:
17
Issue:
01
ISSN:
0219-8436
Page Range / eLocation ID:
1950029
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The process of modeling a series of hand-object parameters is crucial for precise and controllable robotic in-hand manipulation because it enables the mapping from the hand’s actuation input to the object’s motion to be obtained. Without assuming that most of these model parameters are known a priori or can be easily estimated by sensors, we focus on equipping robots with the ability to actively self-identify necessary model parameters using minimal sensing. Here, we derive algorithms, on the basis of the concept of virtual linkage-based representations (VLRs), to self-identify the underlying mechanics of hand-object systems via exploratory manipulation actions and probabilistic reasoning and, in turn, show that the self-identified VLR can enable the control of precise in-hand manipulation. To validate our framework, we instantiated the proposed system on a Yale Model O hand without joint encoders or tactile sensors. The passive adaptability of the underactuated hand greatly facilitates the self-identification process, because they naturally secure stable hand-object interactions during random exploration. Relying solely on an in-hand camera, our system can effectively self-identify the VLRs, even when some fingers are replaced with novel designs. In addition, we show in-hand manipulation applications of handwriting, marble maze playing, and cup stacking to demonstrate the effectiveness of the VLR in precise in-hand manipulation control.

     
    more » « less
  2. null (Ed.)
    In spite of substantial progress, robust and dexterous in-hand manipulation remains a robotics grand challenge. Recent research has shown that optimization of robot hand morphology for specific tasks can result in custom hand designs that are low-cost, easy to maintain, and highly capable. However, the resulting manipulation strategies may not be very robust or generalizable in real-world situations. This paper shows that robustness can be improved dramatically by optimizing controls instead of contact force / trajectories and by considering uncertainty explicitly during the optimization process. We present a evolutionary algorithm based pipeline for co-optimizing hand morphology and control strategy over families of problems and initial states in order to achieve robust in-hand manipulation. We demonstrate that this approach produces robust results which utilize all surfaces of the hand and surprising dynamic motions. We showcase the advantage of optimizing joint limit values to create robust designs. Furthermore, we demonstrate that our approach is complementary to trajectory optimization based approaches and can be utilized to improve robustness of such results as well as to create custom hand designs from scratch. Results are shown for repositioning and reorienting diverse objects relative to the palm of the hand. 
    more » « less
  3. In this paper, we introduce a novel method to support remote telemanipulation tasks in complex environments by providing operators with an enhanced view of the task environment. Our method features a novel viewpoint adjustment algorithm designed to automatically mitigate occlusions caused by workspace geometry, supports visual exploration to provide operators with situation awareness in the remote environment, and mediates context-specific visual challenges by making viewpoint adjustments based on sparse input from the user. Our method builds on the dynamic camera telemanipulation viewing paradigm, where a user controls a manipulation robot, and a camera-in-hand robot alongside the manipulation robot servos to provide a sufficient view of the remote environment. We discuss the real-time motion optimization formulation used to arbitrate the various objectives in our shared-control-based method, particularly highlighting how our occlusion avoidance and viewpoint adaptation approaches fit within this framework. We present results from an empirical evaluation of our proposed occlusion avoidance approach as well as a user study that compares our telemanipulation shared-control method against alternative telemanipulation approaches. We discuss the implications of our work for future shared-control research and robotics applications. 
    more » « less
  4. This work proposes a framework for tracking a desired path of an object held by an adaptive hand via within-hand manipulation. Such underactuated hands are able to passively achieve stable contacts with objects. Combined with vision-based control and data-driven state estimation process, they can solve tasks without accurate hand-object models or multi-modal sensory feedback. In particular, a data-driven regression process is used here to estimate the probability of dropping the object for given manipulation states. Then, an optimization-based planner aims to track the desired path while avoiding states that are above a threshold probability of dropping the object. The optimized cost function, based on the principle of Dynamic-Time Warping (DTW), seeks to minimize the area between the desired and the followed path. By adapting the threshold for the probability of dropping the object, the framework can handle objects of different weights without retraining. Experiments involving writing letters with a marker, as well as tracing randomized paths, were conducted on the Yale Model T-42 hand. Results indicate that the framework successfully avoids undesirable states, while minimizing the proposed cost function, thereby producing object paths for within-hand manipulation that closely match the target ones. 
    more » « less
  5. In this work, we tackle the problem of category-level online pose tracking of objects from point cloud sequences. For the first time, we propose a unified framework that can handle 9DoF pose tracking for novel rigid object instances as well as per-part pose tracking for articulated objects from known categories. Here the 9DoF pose, comprising 6D pose and 3D size, is equivalent to a 3D amodal bounding box representation with free 6D pose. Given the depth point cloud at the current frame and the estimated pose from the last frame, our novel end-to-end pipeline learns to accurately update the pose. Our pipeline is composed of three modules: 1) a pose canonicalization module that normalizes the pose of the input depth point cloud; 2) RotationNet, a module that directly regresses small interframe delta rotations; and 3) CoordinateNet, a module that predicts the normalized coordinates and segmentation, enabling analytical computation of the 3D size and translation. Leveraging the small pose regime in the pose-canonicalized point clouds, our method integrates the best of both worlds by combining dense coordinate prediction and direct rotation regression, thus yielding an end-to-end differentiable pipeline optimized for 9DoF pose accuracy (without using non-differentiable RANSAC). Our extensive experiments demonstrate that our method achieves new state-of-the-art performance on category-level rigid object pose (NOCSREAL275 [29]) and articulated object pose benchmarks (SAPIEN [34], BMVC [18]) at the fastest FPS ∼ 12. 
    more » « less