skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automated Design of Simple and Robust Manipulators for Dexterous In-Hand Manipulation Tasks using Evolutionary Strategies
In spite of substantial progress, robust and dexterous in-hand manipulation remains a robotics grand challenge. Recent research has shown that optimization of robot hand morphology for specific tasks can result in custom hand designs that are low-cost, easy to maintain, and highly capable. However, the resulting manipulation strategies may not be very robust or generalizable in real-world situations. This paper shows that robustness can be improved dramatically by optimizing controls instead of contact force / trajectories and by considering uncertainty explicitly during the optimization process. We present a evolutionary algorithm based pipeline for co-optimizing hand morphology and control strategy over families of problems and initial states in order to achieve robust in-hand manipulation. We demonstrate that this approach produces robust results which utilize all surfaces of the hand and surprising dynamic motions. We showcase the advantage of optimizing joint limit values to create robust designs. Furthermore, we demonstrate that our approach is complementary to trajectory optimization based approaches and can be utilized to improve robustness of such results as well as to create custom hand designs from scratch. Results are shown for repositioning and reorienting diverse objects relative to the palm of the hand.  more » « less
Award ID(s):
1637853
PAR ID:
10201825
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)
Page Range / eLocation ID:
281 to 288
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Grasp planning and motion synthesis for dexterous manipulation tasks are traditionally done given a pre-existing kinematic model for the robotic hand. In this paper, we introduce a framework for automatically designing hand topologies best suited for manipulation tasks given high-level objectives as input. Our pipeline is capable of building custom hand designs around specific manipulation tasks based on high-level user input. Our framework comprises of a sequence of trajectory optimizations chained together to translate a sequence of objective poses into an optimized hand mechanism along with a physically feasible motion plan involving both the constructed hand and the object. We demonstrate the feasibility of this approach by synthesizing a series of hand designs optimized to perform specified in-hand manipulation tasks of varying difficulty. We extend our original pipeline 32 to accommodate the construction of hands suitable for multiple distinct manipulation tasks as well as provide an in depth discussion of the effects of each non-trivial optimization term. 
    more » « less
  2. null (Ed.)
    There has been an explosion of ideas in soft robotics over the past decade, resulting in unprecedented opportunities for end effector design. Soft robot hands offer benefits of low-cost, compliance, and customized design, with the promise of dexterity and robustness. The space of opportunities is vast and exciting. However, new tools are needed to understand the capabilities of such manipulators and to facilitate manipulation planning with soft manipulators that exhibit free-form deformations. To address this challenge, we introduce a sampling based approach to discover and model continuous families of manipulations for soft robot hands. We give an overview of the soft foam robots in production in our lab and describe novel algorithms developed to characterize manipulation families for such robots. Our approach consists of sampling a space of manipulation actions, constructing Gaussian Mixture Model representations covering successful regions, and refining the results to create continuous successful regions representing the manipulation family. The space of manipulation actions is very high dimensional; we consider models with and without dimensionality reduction and provide a rigorous approach to compare models across different dimensions by comparing coverage of an unbiased test dataset in the full dimensional parameter space. Results show that some dimensionality reduction is typically useful in populating the models, but without our technique, the amount of dimensionality reduction to use is difficult to predict ahead of time and can depend on the hand and task. The models we produce can be used to plan and carry out successful, robust manipulation actions and to compare competing robot hand designs. 
    more » « less
  3. Gal, Kobi; Nowé, Ann; Nalepa, Grzegorz J; Fairstein, Roy; Rădulescu, Roxana (Ed.)
    Recently, deep learning has shown to be effective for Electroencephalography (EEG) decoding tasks. Yet, its performance can be negatively influenced by two key factors: 1) the high variance and different types of corruption that are inherent in the signal, 2) the EEG datasets are usually relatively small given the acquisition cost, annotation cost and amount of effort needed. Data augmentation approaches for alleviation of this problem have been empirically studied, with augmentation operations on spatial domain, time domain or frequency domain handcrafted based on expertise of domain knowledge. In this work, we propose a principled approach to perform dynamic evolution on the data for improvement of decoding robustness. The approach is based on distributionally robust optimization and achieves robustness by optimizing on a family of evolved data distributions instead of the single training data distribution. We derived a general data evolution framework based on Wasserstein gradient flow (WGF) and provides two different forms of evolution within the framework. Intuitively, the evolution process helps the EEG decoder to learn more robust and diverse features. It is worth mentioning that the proposed approach can be readily integrated with other data augmentation approaches for further improvements. We performed extensive experiments on the proposed approach and tested its performance on different types of corrupted EEG signals. The model significantly outperforms competitive baselines on challenging decoding scenarios. 
    more » « less
  4. null (Ed.)
    There has been great progress in soft robot design, manufacture, and control in recent years, and soft robots are a tool of choice for safe and robust handling of objects in conditions of uncertainty. Still, dexterous in-hand manipulation using soft robots remains a challenge. This paper introduces foam robot hands actuated by tendons sewn through a fabric glove. The flexibility of tendon actuation allows for high competence in utilizing deformation for robust in-hand manipulation. We discuss manufacturing, control, and design optimization for foam robots and demonstrate robust grasping and in-hand manipulation on a variety of different physical hand prototypes. 
    more » « less
  5. The process of modeling a series of hand-object parameters is crucial for precise and controllable robotic in-hand manipulation because it enables the mapping from the hand’s actuation input to the object’s motion to be obtained. Without assuming that most of these model parameters are known a priori or can be easily estimated by sensors, we focus on equipping robots with the ability to actively self-identify necessary model parameters using minimal sensing. Here, we derive algorithms, on the basis of the concept of virtual linkage-based representations (VLRs), to self-identify the underlying mechanics of hand-object systems via exploratory manipulation actions and probabilistic reasoning and, in turn, show that the self-identified VLR can enable the control of precise in-hand manipulation. To validate our framework, we instantiated the proposed system on a Yale Model O hand without joint encoders or tactile sensors. The passive adaptability of the underactuated hand greatly facilitates the self-identification process, because they naturally secure stable hand-object interactions during random exploration. Relying solely on an in-hand camera, our system can effectively self-identify the VLRs, even when some fingers are replaced with novel designs. In addition, we show in-hand manipulation applications of handwriting, marble maze playing, and cup stacking to demonstrate the effectiveness of the VLR in precise in-hand manipulation control. 
    more » « less