skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterizing Continuous Manipulation Families for Dexterous Soft Robot Hands
There has been an explosion of ideas in soft robotics over the past decade, resulting in unprecedented opportunities for end effector design. Soft robot hands offer benefits of low-cost, compliance, and customized design, with the promise of dexterity and robustness. The space of opportunities is vast and exciting. However, new tools are needed to understand the capabilities of such manipulators and to facilitate manipulation planning with soft manipulators that exhibit free-form deformations. To address this challenge, we introduce a sampling based approach to discover and model continuous families of manipulations for soft robot hands. We give an overview of the soft foam robots in production in our lab and describe novel algorithms developed to characterize manipulation families for such robots. Our approach consists of sampling a space of manipulation actions, constructing Gaussian Mixture Model representations covering successful regions, and refining the results to create continuous successful regions representing the manipulation family. The space of manipulation actions is very high dimensional; we consider models with and without dimensionality reduction and provide a rigorous approach to compare models across different dimensions by comparing coverage of an unbiased test dataset in the full dimensional parameter space. Results show that some dimensionality reduction is typically useful in populating the models, but without our technique, the amount of dimensionality reduction to use is difficult to predict ahead of time and can depend on the hand and task. The models we produce can be used to plan and carry out successful, robust manipulation actions and to compare competing robot hand designs.  more » « less
Award ID(s):
1925130
PAR ID:
10293235
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in robotics and AI
ISSN:
2296-9144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    There has been great progress in soft robot design, manufacture, and control in recent years, and soft robots are a tool of choice for safe and robust handling of objects in conditions of uncertainty. Still, dexterous in-hand manipulation using soft robots remains a challenge. This paper introduces foam robot hands actuated by tendons sewn through a fabric glove. The flexibility of tendon actuation allows for high competence in utilizing deformation for robust in-hand manipulation. We discuss manufacturing, control, and design optimization for foam robots and demonstrate robust grasping and in-hand manipulation on a variety of different physical hand prototypes. 
    more » « less
  2. Soft robots have the potential to interact with sensitive environments and perform complex tasks effectively. However, motion plans and trajectories for soft manipulators are challenging to calculate due to their deformable nature and nonlinear dynamics. This article introduces a fast realtime trajectory generation approach for soft robot manipulators, which creates dynamically-feasible motions for arbitrary kinematically-feasible paths of the robot’s end effector. Our insight is that piecewise constant curvature (PCC) dynamics models of soft robots can be differentially flat, therefore control inputs can be calculated algebraically rather than through a nonlinear differential equation. We prove this flatness under certain conditions, with the curvatures of the robot as the flat outputs. Our two-step trajectory generation approach uses an inverse kinematics procedure to calculate a motion plan of robot curvatures per end-effector position, then, our flatness diffeomorphism generates corresponding control inputs that respect velocity. We validate our approach through simulations of our representative soft robot manipulator along three different trajectories, demonstrating a margin of 23x faster than realtime at a frequency of 100 Hz. This approach could allow fast verifiable replanning of soft robots’ motions in safety-critical physical environments, crucial for deployment in the real world. 
    more » « less
  3. Robots working in human environments often encounter a wide range of articulated objects, such as tools, cabinets, and other jointed objects. Such articulated objects can take an infinite number of possible poses, as a point in a potentially high-dimensional continuous space. A robot must perceive this continuous pose to manipulate the object to a desired pose. This problem of perception and manipulation of articulated objects remains a challenge due to its high dimensionality and multimodal uncertainty. Here, we describe a factored approach to estimate the poses of articulated objects using an efficient approach to nonparametric belief propagation. We consider inputs as geometrical models with articulation constraints and observed RGBD (red, green, blue, and depth) sensor data. The described framework produces object-part pose beliefs iteratively. The problem is formulated as a pairwise Markov random field (MRF), where each hidden node (continuous pose variable) is an observed object-part’s pose and the edges denote the articulation constraints between the parts. We describe articulated pose estimation by a “pull” message passing algorithm for nonparametric belief propagation (PMPNBP) and evaluate its convergence properties over scenes with articulated objects. Robot experiments are provided to demonstrate the necessity of maintaining beliefs to perform goal-driven manipulation tasks. 
    more » « less
  4. We build a system that enables any human to control a robot hand and arm, simply by demonstrating motions with their own hand. The robot observes the human operator via a single RGB camera and imitates their actions in real-time. Human hands and robot hands differ in shape, size, and joint structure, and performing this translation from a single uncalibrated camera is a highly underconstrained problem. Moreover, the retargeted trajectories must effectively execute tasks on a physical robot, which requires them to be temporally smooth and free of self-collisions. Our key insight is that while paired human-robot correspondence data is expensive to collect, the internet contains a massive corpus of rich and diverse human hand videos. We leverage this data to train a system that understands human hands and retargets a human video stream into a robot hand-arm trajectory that is smooth, swift, safe, and semantically similar to the guiding demonstration. We demonstrate that it enables previously untrained people to teleoperate a robot on various dexterous manipulation tasks. Our low-cost, glove-free, marker-free remote teleoperation system makes robot teaching more accessible and we hope that it can aid robots that learn to act autonomously in the real world. 
    more » « less
  5. Distributed manipulators - consisting of a set of actuators or robots working cooperatively to achieve a manipulation task - are robust and flexible tools for performing a range of planar manipulation skills. One novel example is the delta array, a distributed manipulator composed of a grid of delta robots, capable of performing dexterous manipulation tasks using strategies incorporating both dynamic and static contact. Hand-designing effective distributed control policies for such a manipulator can be complex and time consuming, given the high-dimensional action space and unfamiliar system dynamics. In this paper, we examine the principles guiding development and control of such a delta array for a planar translation task. We explore policy learning as a robust cooperative control approach, allowing for smooth manipulation of a range of objects, showing improved accuracy and efficiency over baseline human-designed policies. 
    more » « less