Defense against small molecule toxic gases is an important aspect of protection against chemical and biological threat as well as chemical releases from industrial accidents. Current protective respirators/garments cannot effectively block small molecule toxic gases and vapors and retain moisture transmission capability without a heavy burden. Here, we developed a nanopacked bed of nanoparticles of UiO-66-NH₂ metal organic framework (MOF) by synthesizing them in the pores of microporous expanded polytetrafluoroethylene (ePTFE) membranes. The submicron scale size of membrane pores ensures a large surface area of MOF nanoparticles which can capture/adsorb and react with toxic gas molecules efficiently. It was demonstratedmore »
Highly H 2 O permeable ionic liquid encapsulated metal–organic framework membranes for energy-efficient air-dehumidification
Isothermal membrane-based air dehumidification (IMAD) is much more energy-efficient and economical than traditional air-dehumidification technologies. There are, however, no practical IMAD process technologies currently available mainly due to limitations of current membranes. Ionic liquids (ILs) are a promising air-dehumidification membrane material. Current supported IL membranes suffer from poor stability, limiting their performances. Herein, we propose new stable IL membranes, encapsulated IL membranes (EILMs) by encapsulating 1-butyl-3-methylimidazolium bromide ([C 4 MIM][Br]) into ultrathin polycrystalline UiO-66-NH 2 metal–organic framework membranes via a ship-in-a-bottle method. The stability of IL membranes is significantly enhanced due to the IL entrapped in the pore cages of UiO-66-NH 2 . The EILMs show unprecedentedly high H 2 O permeance (∼2.36 × 10 −4 mol m −2 s −1 Pa −1 ), an order of magnitude greater than that of the most permeable air-dehumidification membranes reported so far. Furthermore, the encapsulated [C 4 MIM][Br] drastically increases the H 2 O/N 2 separation factor to ∼1560, satisfying the minimally required H 2 O/N 2 separation performance for commercially viable air-dehumidification.
- Publication Date:
- NSF-PAR ID:
- 10201962
- Journal Name:
- Journal of Materials Chemistry A
- ISSN:
- 2050-7488
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
[RuCp*(1,3,5-R 3 C 6 H 3 )] 2 {Cp* = η 5 -pentamethylcyclopentadienyl, R = Me, Et} have previously been found to be moderately air stable, yet highly reducing, with estimated D + /0.5D 2 (where D 2 and D + represent the dimer and the corresponding monomeric cation, respectively) redox potentials of ca. −2.0 V vs. FeCp 2 +/0 . These properties have led to their use as n-dopants for organic semiconductors. Use of arenes substituted with π-electron donors is anticipated to lead to even more strongly reducing dimers. [RuCp*(1-(Me 2 N)-3,5-Me 2 C 6 H 3 )] +more »
-
Ionic liquids (ILs) exhibit unique properties that have led to their development and widespread use for a variety of applications. Development efforts have generally focused on achieving desired macroscopic properties via tuning of the IL through variation of the cations and anions. Both the macroscopic and microscopic properties of an IL influence its tunability and thus feasibility of use for selected applications. Works geared toward a microscopic understanding of the nature and strength of the intrinsic cation-anion interactions of ILs have been limited to date. Specifically, the intrinsic strength of the cation-anion interactions in ILs is largely unknown. In previousmore »
-
Low-temperature direct ammonia fuel cells (DAFCs) use carbon-neutral ammonia as a fuel, which has attracted increasing attention recently due to ammonia's low source-to-tank energy cost, easy transport and storage, and wide availability. However, current DAFC technologies are greatly limited by the kinetically sluggish ammonia oxidation reaction (AOR) at the anode. Herein, we report an AOR catalyst, in which ternary PtIrZn nanoparticles with an average size of 2.3 ± 0.2 nm were highly dispersed on a binary composite support comprising cerium oxide (CeO 2 ) and zeolitic imidazolate framework-8 (ZIF-8)-derived carbon (PtIrZn/CeO 2 -ZIF-8) through a sonochemical-assisted synthesis method. The PtIrZnmore »
-
The discovery of oxide electronics is of increasing importance today as one of the most promising new technologies and manufacturing processes for a variety of electronic and optoelectronic applications such as next-generation displays, batteries, solar cells, memory devices, and photodetectors[1]. The high potential use seen in oxide electronics is due primarily to their high carrier mobilities and their ability to be fabricated at low temperatures[2]. However, since the majority of oxide semiconductors are n-type oxides, current applications are limited to unipolar devices, eventually developing oxide-based bipolar devices such as p-n diodes and complementary metal-oxide semiconductors. We have contributed to amore »