skip to main content


Title: Automated image localization to support rapid building reconnaissance in a large‐scale area
Collecting massive amounts of image data is a common way to record the post-event condition of buildings, to be used by engineers and researchers to learn from that event. Key information needed to interpret the image data collected during these reconnaissance missions is the location within the building where each image was taken. However, image localization is difficult in an indoor environment, as GPS is not generally available because of weak or broken signals. To support rapid, seamless data collection during a reconnaissance mission, we develop and validate a fully automated technique to provide robust indoor localization while requiring no prior information about the condition or spatial layout of an indoor environment. The technique is meant for large-scale data collection across multiple floors within multiple buildings. A systematic method is designed to separate the reconnaissance data into individual buildings and individual floors. Then, for data within each floor, an optimization problem is formulated to automatically overlay the path onto the structural drawings providing robust results, and subsequently, yielding the image locations. The end-to end technique only requires the data collector to wear an additional inexpensive motion camera, thus, it does not add time or effort to the current rapid reconnaissance protocol. As no prior information about the condition or spatial layout of the indoor environment is needed, this technique can be adapted to a large variety of building environments and does not require any type of preparation in the postevent settings. This technique is validated using data collected from several real buildings.  more » « less
Award ID(s):
1835473
NSF-PAR ID:
10384899
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Computer-Aided Civil and Infrastructure Engineering
ISSN:
1093-9687
Page Range / eLocation ID:
1-23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Image data remains an important tool for post-event building assessment and documentation. After each natural hazard event, significant efforts are made by teams of engineers to visit the affected regions and collect useful image data. In general, a global positioning system (GPS) can provide useful spatial information for localizing image data. However, it is challenging to collect such information when images are captured in places where GPS signals are weak or interrupted, such as the indoor spaces of buildings. The inability to document the images’ locations hinders the analysis, organization, and documentation of these images as they lack sufficient spatial context. In this work, we develop a methodology to localize images and link them to locations on a structural drawing. A stream of images can readily be gathered along the path taken through a building using a compact camera. These images may be used to compute a relative location of each image in a 3D point cloud model, which is reconstructed using a visual odometry algorithm. The images may also be used to create local 3D textured models for building-components-of-interest using a structure-from-motion algorithm. A parallel set of images that are collected for building assessment is linked to the image stream using time information. By projecting the point cloud model to the structural drawing, the images can be overlaid onto the drawing, providing clear context information necessary to make use of those images. Additionally, components- or damage-of-interest captured in these images can be reconstructed in 3D, enabling detailed assessments having sufficient geospatial context. The technique is demonstrated by emulating post-event building assessment and data collection in a real building. 
    more » « less
  2. Abstract

    After a disaster, teams of structural engineers collect vast amounts of images from damaged buildings to obtain new knowledge and extract lessons from the event. However, in many cases, the images collected are captured without sufficient spatial context. When damage is severe, it may be quite difficult to even recognize the building. Accessing images of the predisaster condition of those buildings is required to accurately identify the cause of the failure or the actual loss in the building. Here, to address this issue, we develop a method to automatically extract pre‐event building images from 360° panorama images (panoramas). By providing a geotagged image collected near the target building as the input, panoramas close to the input image location are automatically downloaded through street view services (e.g., Google or Bing in the United States). By computing the geometric relationship between the panoramas and the target building, the most suitable projection direction for each panorama is identified to generate high‐quality 2D images of the building. Region‐based convolutional neural networks are exploited to recognize the building within those 2D images. Several panoramas are used so that the detected building images provide various viewpoints of the building. To demonstrate the capability of the technique, we consider residential buildings in Holiday Beach in Rockport, Texas, United States, that experienced significant devastation in Hurricane Harvey in 2017. Using geotagged images gathered during actual postdisaster building reconnaissance missions, we verify the method by successfully extracting residential building images from Google Street View images, which were captured before the event.

     
    more » « less
  3. The historical settlement data compilation for Spain (HISDAC-ES) is a geospatial dataset consisting of over 240 gridded surfaces measuring the physical, functional, age-related, and evolutionary characteristics of the Spanish building stock. We scraped, harmonized, and aggregated cadastral building footprint data for Spain, covering over 12,000,000 building footprints including construction year attributes, to create a multi-faceted series of gridded surfaces (GeoTIFF format), describing the evolution of human settlements in Spain from 1900 to 2020, at 100m spatial and 5 years temporal resolution. Also, the dataset contains aggregated characteristics and completeness statistics at the municipality level, in CSV and GeoPackage format.

    !!! UPDATE 08-2023 !!!: We provide a new, improved version of HISDAC-ES. Specifically, we fixed two bugs in the production code that caused an incorrect rasterization of the multitemporal BUFA layers and of the PHYS layers (BUFA, BIA, DWEL, BUNITS sum and mean). Moreover, we added decadal raster datasets measuring residential building footprint and building indoor area (1900-2020), and provide a country-wide, harmonized building footprint centroid dataset in GeoPackage vector data format.

    File descriptions:

    Datasets are available in three spatial reference systems:

    1. HISDAC-ES_All_LAEA.zip: Raster data in Lambert Azimuthal Equal Area (LAEA) covering all Spanish territory.
    2. HISDAC-ES_IbericPeninsula_UTM30.zip: Raster data in UTM Zone 30N covering all the Iberic Peninsula + Céuta and Melilla.
    3. HISDAC-ES_CanaryIslands_REGCAN.zip: Raster data in REGCAN-95, covering the Canary Islands only.
    4. HISDAC-ES_MunicipAggregates.zip: Municipality-level aggregates and completeness statistics (CSV, GeoPackage), in LAEA projection.
    5. ES_building_centroids_merged_spatjoin.gpkg: 7,000,000+ building footprint centroids in GeoPackage format, harmonized from the different cadastral systems, representing the input data for HISDAC-ES. These data can be used for sanity checks or for the creation of further, user-defined gridded surfaces.

    Source data:

    HISDAC-ES is derived from cadastral building footprint data, available from different authorities in Spain:

    • Araba province: https://geo.araba.eus/WFS_Katastroa?SERVICE=WFS&VERSION=1.1.0&REQUEST=GetCapabilities
    • Bizkaia province: https://web.bizkaia.eus/es/inspirebizkaia
    • Gipuzkoa province: https://b5m.gipuzkoa.eus/web5000/es/utilidades/inspire/edificios/
    • Navarra region: https://inspire.navarra.es/services/BU/wfs
    • Other regions: http://www.catastro.minhap.es/INSPIRE/buildings/ES.SDGC.bu.atom.xml
    • Data source of municipality polygons: Centro Nacional de Información Geográfica (https://centrodedescargas.cnig.es/CentroDescargas/index.jsp)

    Technical notes:

    Gridded data

    File nomenclature:

    ./region_projection_theme/hisdac_es_theme_variable_version_resolution[m][_year].tif

    Regions:

    • all: complete territory of Spain
    • can: Canarian Islands only
    • ibe: Iberic peninsula + Céuta + Melilla

    Projections:

    • laea: Lambert azimuthal equal area (EPSG:3035)
    • regcan: REGCAN95 / UTM zone 28N (EPSG:4083)
    • utm: ETRS89 / UTM zone 30N (EPSG:25830)

    Themes:

    • evolution / evol: multi-temporal physical measurements
    • landuse: multi-temporal building counts per land use (i.e., building function) class
    • physical / phys: physical building characteristics in 2020
    • temporal / temp: temporal characteristics (construction year statistics)

    Variables: evolution

    • budens: building density (count per grid cell area)
    • bufa: building footprint area
    • deva: developed area (any grid cell containing at least one building)
    • resbufa: residential building footprint area
    • resbia: residential building indoor area

    Variables: physical

    • bia: building indoor area
    • bufa: building footprint area
    • bunits: number of building units
    • dwel: number of dwellings

    Variables: temporal

    • mincoy: minimum construction year per grid cell
    • maxcoy: minimum construction year per grid cell
    • meancoy: mean construction year per grid cell
    • medcoy: median construction year per grid cell
    • modecoy: mode (most frequent) construction year per grid cell
    • varcoy: variety of construction years per grid cell

    Variable: landuse

    Counts of buildings per grid cell and land use type.

    Municipality-level data

    • hisdac_es_municipality_stats_multitemporal_longform_v1.csv: This CSV file contains the zonal sums of the gridded surfaces (e.g., number of buildings per year and municipality) in long form. Note that a value of 0 for the year attribute denotes the statistics for records without construction year information.
    • hisdac_es_municipality_stats_multitemporal_wideform_v1.csv: This CSV file contains the zonal sums of the gridded surfaces (e.g., number of buildings per year and municipality) in wide form. Note that a value of 0 for the year suffix denotes the statistics for records without construction year information.
    • hisdac_es_municipality_stats_completeness_v1.csv: This CSV file contains the missingness rates (in %) of the building attribute per municipality, ranging from 0.0 (attribute exists for all buildings) to 100.0 (attribute exists for none of the buildings) in a given municipality.

    Column names for the completeness statistics tables:

    • NATCODE: National municipality identifier*
    • num_total: number of buildings per munic
    • perc_bymiss: Percentage of buildings with missing built year (construction year)
    • perc_lumiss: Percentage of buildings with missing landuse attribute
    • perc_luother: Percentage of buildings with landuse type "other"
    • perc_num_floors_miss: Percentage of buildings without valid number of floors attribute
    • perc_num_dwel_miss: Percentage of buildings without valid number of dwellings attribute
    • perc_num_bunits_miss: Percentage of buildings without valid number of building units attribute
    • perc_offi_area_miss: Percentage of buildings without valid official area (building indoor area, BIA) attribute
    • perc_num_dwel_and_num_bunits_miss: Percentage of buildings missing both number of dwellings and number of building units attribute

    The same statistics are available as geopackage file including municipality polygons in Lambert azimuthal equal area (EPSG:3035).

    *From the NATCODE, other regional identifiers can be derived as follows:

    • NATCODE: 34 01 04 04001
    • Country: 34
    • Comunidad autónoma (CA_CODE): 01
    • Province (PROV_CODE): 04
    • LAU code: 04001 (province + municipality code)
     
    more » « less
  4. null (Ed.)
    As the number of Internet of Things (IoT) devices continues to increase, energy-harvesting (EH) devices eliminate the need to replace batteries or find outlets for sensors in indoor environments. This comes at a cost, however, as these energy-harvesting devices introduce new failure modes not present in traditional IoT devices: extended periods of no harvestable energy cause them to go dormant, their often simple wireless protocols are unreliable, and their limited energy reserves prohibit many diagnostic features. While energy-harvesting sensors promise easy-to-setup and maintenance-free deployments, their limitations hinder robust, long-term data collection. To continuously monitor and maintain a network of energy-harvesting devices in buildings, we propose the EH-HouseKeeper. EH-HouseKeeper is a data-driven system that monitors EH device compliance and predicts healthy signal zones in a building based on the existing gateway location(s) and building profile for easier device maintenance. EH-HouseKeeper does this by first filtering excess event-triggered data points and applying representation learning on building features that describe the path between the gateways and the device. We assessed EH-HouseKeeper by deploying 125 energy-harvesting sensors of varying types in a 17,000 square foot research infrastructure, randomly masking a quarter of the sensors as the test set for validation. The results of our 6-month data-collection period demonstrate an average greater than 80% accuracy in predicting the health status of the subset. Our results validate techniques for assessing sensor health status across device types, for inferring gateway status, and approaches to assist in identifying between gateway, transmission, and sensor faults. 
    more » « less
  5. Chen, J.Y.C. (Ed.)
    In recent years there has been a sharp increase in active shooter events, but there has been no introduction of new technology or tactics capable of increasing preparedness and training for active shooter events. This has raised a major concern about the lack of tools that would allow robust predictions of realistic human movements and the lack of understanding about the interaction in designated simulation environments. It is impractical to carry out live experiments where thousands of people are evacuated from buildings designed for every possible emergency condition. There has been progress in understanding human movement, human motion synthesis, crowd dynamics, indoor environments, and their relationships with active shooter events, but challenges remain. This paper presents a virtual reality (VR) experimental setup for conducting virtual evacuation drills in response to extreme events and demonstrates the behavior of agents during an active shooter environment. The behavior of agents is implemented using behavior trees in the Unity gaming engine. The VR experimental setup can simulate human behavior during an active shooter event in a campus setting. A presence questionnaire (PQ) was used in the user study to evaluate the effectiveness and engagement of our active shooter environment. The results show that majority of users agreed that the sense of presence was increased when using the emergency response training environment for a building evacuation environment. 
    more » « less