skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automated image localization to support rapid building reconnaissance in a large‐scale area
Collecting massive amounts of image data is a common way to record the post-event condition of buildings, to be used by engineers and researchers to learn from that event. Key information needed to interpret the image data collected during these reconnaissance missions is the location within the building where each image was taken. However, image localization is difficult in an indoor environment, as GPS is not generally available because of weak or broken signals. To support rapid, seamless data collection during a reconnaissance mission, we develop and validate a fully automated technique to provide robust indoor localization while requiring no prior information about the condition or spatial layout of an indoor environment. The technique is meant for large-scale data collection across multiple floors within multiple buildings. A systematic method is designed to separate the reconnaissance data into individual buildings and individual floors. Then, for data within each floor, an optimization problem is formulated to automatically overlay the path onto the structural drawings providing robust results, and subsequently, yielding the image locations. The end-to end technique only requires the data collector to wear an additional inexpensive motion camera, thus, it does not add time or effort to the current rapid reconnaissance protocol. As no prior information about the condition or spatial layout of the indoor environment is needed, this technique can be adapted to a large variety of building environments and does not require any type of preparation in the postevent settings. This technique is validated using data collected from several real buildings.  more » « less
Award ID(s):
1835473
PAR ID:
10384899
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Computer-Aided Civil and Infrastructure Engineering
ISSN:
1093-9687
Page Range / eLocation ID:
1-23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Image data remains an important tool for post-event building assessment and documentation. After each natural hazard event, significant efforts are made by teams of engineers to visit the affected regions and collect useful image data. In general, a global positioning system (GPS) can provide useful spatial information for localizing image data. However, it is challenging to collect such information when images are captured in places where GPS signals are weak or interrupted, such as the indoor spaces of buildings. The inability to document the images’ locations hinders the analysis, organization, and documentation of these images as they lack sufficient spatial context. In this work, we develop a methodology to localize images and link them to locations on a structural drawing. A stream of images can readily be gathered along the path taken through a building using a compact camera. These images may be used to compute a relative location of each image in a 3D point cloud model, which is reconstructed using a visual odometry algorithm. The images may also be used to create local 3D textured models for building-components-of-interest using a structure-from-motion algorithm. A parallel set of images that are collected for building assessment is linked to the image stream using time information. By projecting the point cloud model to the structural drawing, the images can be overlaid onto the drawing, providing clear context information necessary to make use of those images. Additionally, components- or damage-of-interest captured in these images can be reconstructed in 3D, enabling detailed assessments having sufficient geospatial context. The technique is demonstrated by emulating post-event building assessment and data collection in a real building. 
    more » « less
  2. In urban areas like Chicago, daily life extends above ground level due to the prevalence of high-rise buildings where residents and commuters live and work. This study examines the variation in fine particulate matter (PM2.5) concentrations across building stories. PM2.5 levels were measured using PurpleAir sensors, installed between 8 April and 7 May 2023, on floors one, four, six, and nine of an office building in Chicago. Additionally, data were collected from a public outdoor PurpleAir sensor on the fourteenth floor of a condominium located 800 m away. The results show that outdoor PM2.5 concentrations peak at 14 m height, and then decline by 0.11 μg/m3 per meter elevation, especially noticeable from midnight to 8 a.m. under stable atmospheric conditions. Indoor PM2.5 concentrations increase steadily by 0.02 μg/m3 per meter elevation, particularly during peak work hours, likely caused by greater infiltration rates at higher floors. Both outdoor and indoor concentrations peak around noon. We find that indoor and outdoor PM2.5 are positively correlated, with indoor levels consistently remaining lower than outside levels. These findings align with previous research suggesting decreasing outdoor air pollution concentrations with increasing height. The study informs decision-making by community members and policymakers regarding air pollution exposure in urban settings. 
    more » « less
  3. null (Ed.)
    As the number of Internet of Things (IoT) devices continues to increase, energy-harvesting (EH) devices eliminate the need to replace batteries or find outlets for sensors in indoor environments. This comes at a cost, however, as these energy-harvesting devices introduce new failure modes not present in traditional IoT devices: extended periods of no harvestable energy cause them to go dormant, their often simple wireless protocols are unreliable, and their limited energy reserves prohibit many diagnostic features. While energy-harvesting sensors promise easy-to-setup and maintenance-free deployments, their limitations hinder robust, long-term data collection. To continuously monitor and maintain a network of energy-harvesting devices in buildings, we propose the EH-HouseKeeper. EH-HouseKeeper is a data-driven system that monitors EH device compliance and predicts healthy signal zones in a building based on the existing gateway location(s) and building profile for easier device maintenance. EH-HouseKeeper does this by first filtering excess event-triggered data points and applying representation learning on building features that describe the path between the gateways and the device. We assessed EH-HouseKeeper by deploying 125 energy-harvesting sensors of varying types in a 17,000 square foot research infrastructure, randomly masking a quarter of the sensors as the test set for validation. The results of our 6-month data-collection period demonstrate an average greater than 80% accuracy in predicting the health status of the subset. Our results validate techniques for assessing sensor health status across device types, for inferring gateway status, and approaches to assist in identifying between gateway, transmission, and sensor faults. 
    more » « less
  4. Building occupancy information is significant for a variety of reasons, from allocation of resources in smart buildings to responding during emergency situations. As most people spend more than 90% of their time indoors, a comfortable indoor environment is crucial. To ensure comfort, traditional HVAC systems condition rooms assuming maximum occupancy, accounting for more than 50% of buildings’ energy budgets in the US. Occupancy level is a key factor in ensuring energy efficiency, as occupancy-controlled HVAC systems can reduce energy waste by conditioning rooms based on actual usage. Numerous studies have focused on developing occupancy estimation models leveraging existing sensors, with camera-based methods gaining popularity due to their high precision and widespread availability. However, the main concern with using cameras for occupancy estimation is the potential violation of occupants’ privacy. Unlike previous video-/image-based occupancy estimation methods, we addressed the issue of occupants’ privacy in this work by proposing and investigating both motion-based and motion-independent occupancy counting methods on intentionally blurred video frames. Our proposed approach included the development of a motion-based technique that inherently preserves privacy, as well as motion-independent techniques such as detection-based and density-estimation-based methods. To improve the accuracy of the motion-independent approaches, we utilized deblurring methods: an iterative statistical technique and a deep-learning-based method. Furthermore, we conducted an analysis of the privacy implications of our motion-independent occupancy counting system by comparing the original, blurred, and deblurred frames using different image quality assessment metrics. This analysis provided insights into the trade-off between occupancy estimation accuracy and the preservation of occupants’ visual privacy. The combination of iterative statistical deblurring and density estimation achieved a 16.29% counting error, outperforming our other proposed approaches while preserving occupants’ visual privacy to a certain extent. Our multifaceted approach aims to contribute to the field of occupancy estimation by proposing a solution that seeks to balance the trade-off between accuracy and privacy. While further research is needed to fully address this complex issue, our work provides insights and a step towards a more privacy-aware occupancy estimation system. 
    more » « less
  5. Chen, J.Y.C. (Ed.)
    In recent years there has been a sharp increase in active shooter events, but there has been no introduction of new technology or tactics capable of increasing preparedness and training for active shooter events. This has raised a major concern about the lack of tools that would allow robust predictions of realistic human movements and the lack of understanding about the interaction in designated simulation environments. It is impractical to carry out live experiments where thousands of people are evacuated from buildings designed for every possible emergency condition. There has been progress in understanding human movement, human motion synthesis, crowd dynamics, indoor environments, and their relationships with active shooter events, but challenges remain. This paper presents a virtual reality (VR) experimental setup for conducting virtual evacuation drills in response to extreme events and demonstrates the behavior of agents during an active shooter environment. The behavior of agents is implemented using behavior trees in the Unity gaming engine. The VR experimental setup can simulate human behavior during an active shooter event in a campus setting. A presence questionnaire (PQ) was used in the user study to evaluate the effectiveness and engagement of our active shooter environment. The results show that majority of users agreed that the sense of presence was increased when using the emergency response training environment for a building evacuation environment. 
    more » « less