skip to main content


Title: Detection of cosmic structures using the bispectrum phase. II. First results from application to cosmic reionization using the Hydrogen Epoch of Reionization Array
Award ID(s):
1636646
NSF-PAR ID:
10204065
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Physical Review D
Volume:
102
Issue:
2
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Traditional large-scale models of reionization usually employ simple deterministic relations between halo mass and luminosity to predict how reionization proceeds. We here examine the impact on modeling reionization of using more detailed models for the ionizing sources as identified within the 100 h −1 Mpc cosmological hydrodynamic simulation S imba , coupled with postprocessed radiative transfer. Comparing with simple (one-to-one) models, the main difference with using S imba sources is the scatter in the relation between dark matter halos and star formation, and hence ionizing emissivity. We find that, at the power spectrum level, the ionization morphology remains mostly unchanged, regardless of the variability in the number of sources or escape fraction. In particular, the power spectrum shape remains unaffected and its amplitude changes slightly by less than 5%–10%, throughout reionization, depending on the scale and neutral fraction. Our results show that simplified models of ionizing sources remain viable to efficiently model the structure of reionization on cosmological scales, although the precise progress of reionization requires accounting for the scatter induced by astrophysical effects. 
    more » « less
  2. null (Ed.)
    ABSTRACT A number of independent observations suggest that the intergalactic medium was significantly neutral at z = 7 and that reionization was, perhaps, still in progress at z = 5.7. The narrowband survey, SILVERRUSH, has mapped over 2000 Lyman-α emitters (LAEs) at these redshifts ( G58). Previous analyses have assumed that reionization was over by z = 5.7, but this data may actually sample the final stages of reionization when the last neutral islands were relegated to the cosmic voids. Motivated by these developments, we re-examine LAE void and peak statistics and their ability to constrain reionization. We construct models of the LAE distribution in (1 Gpc h−1)3 volumes, spanning a range of neutral fractions at z = 5.7 and 6.6. Models with a higher neutral fraction show an enhanced probability of finding holes in the LAE distribution. When comparing models at fixed mean surface density, however, LAEs obscured by neutral gas in the voids must be compensated by visible LAEs elsewhere. Hence, in these models, the likelihood of finding an overdense peak is also enhanced in the latter half of reionization. Compared to the widely used angular two-point correlation function (2PCF), we find that the void probability function (VPF) provides a more sensitive test of models during the latter half of reionization. By comparison, at neutral fractions $\sim 50{{\ \rm per\ cent}}$, the VPF and a simple peak thresholding statistic are both similar to the 2PCF in constraining power. Lastly, we find that the cosmic variance and large-scale asymmetries observed in the SILVERRUSH fields are consistent with large-scale structure in a ΛCDM universe. 
    more » « less
  3. null (Ed.)
    ABSTRACT We study the escape fraction of ionizing photons (fesc) in two cosmological zoom-in simulations of galaxies in the reionization era with halo mass Mhalo ∼ 1010 and $10^{11}\, \mathrm{ M}_{\odot }$ (stellar mass M* ∼ 107 and $10^9\, \mathrm{ M}_{\odot }$) at z = 5 from the Feedback in Realistic Environments project. These simulations explicitly resolve the formation of proto-globular clusters (GCs) self-consistently, where 17–39 per cent of stars form in bound clusters during starbursts. Using post-processing Monte Carlo radiative transfer calculations of ionizing radiation, we compute fesc from cluster stars and non-cluster stars formed during a starburst over ∼100 Myr in each galaxy. We find that the averaged fesc over the lifetime of a star particle follows a similar distribution for cluster stars and non-cluster stars. Clusters tend to have low fesc in the first few Myr, presumably because they form preferentially in more extreme environments with high optical depths; the fesc increases later as feedback starts to destroy the natal cloud. On the other hand, some non-cluster stars formed between cluster complexes or in the compressed shells at the front of a superbubble can also have high fesc. We find that cluster stars on average have comparable fesc to non-cluster stars. This result is robust across several star formation models in our simulations. Our results suggest that the fraction of ionizing photons from proto-GCs to cosmic reionization is comparable to the cluster formation efficiencies in high-redshift galaxies and thus proto-GCs likely contribute an appreciable fraction of photons but are not the dominant sources for reionization. 
    more » « less
  4. Abstract We present a new investigation of the intergalactic medium (IGM) near the end of reionization using “dark gaps” in the Ly α forest. Using spectra of 55 QSOs at z em > 5.5, including new data from the XQR-30 VLT Large Programme, we identify gaps in the Ly α forest where the transmission averaged over 1 comoving h −1 Mpc bins falls below 5%. Nine ultralong ( L > 80 h −1 Mpc) dark gaps are identified at z < 6. In addition, we quantify the fraction of QSO spectra exhibiting gaps longer than 30 h −1 Mpc, F 30 , as a function of redshift. We measure F 30 ≃ 0.9, 0.6, and 0.15 at z = 6.0, 5.8, and 5.6, respectively, with the last of these long dark gaps persisting down to z ≃5.3. Comparing our results with predictions from hydrodynamical simulations, we find that the data are consistent with models wherein reionization extends significantly below redshift six. Models wherein the IGM is essentially fully reionized that retain large-scale fluctuations in the ionizing UV background at z ≲6 are also potentially consistent with the data. Overall, our results suggest that signatures of reionization in the form of islands of neutral hydrogen and/or large-scale fluctuations in the ionizing background remain present in the IGM until at least z ≃ 5.3. 
    more » « less