skip to main content


Title: CyberAmbassadors: Results from Pilot Testing a New Professional Skills Curriculum
The CyberAmbassadors Project (NSF #1730137) is a training grant to develop professional skills curriculum (communications, teamwork, leadership) to build capacity in Cyber Infrastructure (CI) Professionals. CI Professionals are experts at high performance computing, data science algorithms, and/or supercomputing infrastructure; they are often called upon to work with experts from STEM (science, technology, engineering, mathematics) in multi-disciplinary teams to solve complex problems. The CyberAmbassadors training program seeks to improve the function of these teams by helping CI Professionals build and practice skills for effective communication, teamwork and leadership within the context of complex, multidisciplinary research. This paper summarizes the results of the pilot testing of the CyberAmbassadors curriculum, which was conducted at institutions across the United States using both in-person, online and hybrid delivery methods. A Kirkpatrick evaluation model was used to assess expectations and reasons for participation, as well as satisfaction with the training and impacts on participants’ learning and behavior. The curriculum was revised based on these initial pilot tests, and 43 volunteers have participated in “train the trainers” workshops to prepare to facilitate this training on a larger scale during 2019-20.  more » « less
Award ID(s):
1730137
NSF-PAR ID:
10204074
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
PEARC '20: Practice and Experience in Advanced Research Computing
Page Range / eLocation ID:
379 to 385
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The CyberAmbassador project aims to provide professional skills training for Cyber-Infrastructure (CI) professionals, with the goal of developing "CyberAmbassadors" [16] who are prepared to facilitate and lead multidisciplinary, computationally-intensive research. This NSF funded program (Award Number 1730137) has the following objectives: (1) Develop curriculum that focuses on professional skills (communications, teamwork, leadership) within the context of large scale, multidisciplinary computational research; (2) Pilot, evaluate and revise the curriculum; (3) Develop "Train the Trainers" workshops to broaden the impact of the curriculum and connect with external partners to ensure the longevity of the program beyond the timeframe of the grant. This paper introduces the core curriculum, describes different modes of delivering content that we have piloted, shares preliminary evaluation results from two particularly relevant cases, and offers initial lessons learned. 
    more » « less
  2. null (Ed.)
    STEM (science, technology, engineering, mathematics) graduate programs excel at developing students’ technical expertise and research skills. The interdisciplinary nature of many STEM research projects means that graduate students often find themselves paired with experts from other fields and asked to work together to solve complex problems. At Michigan State University, the College of Engineering has developed a graduate level course that helps students build professional skills (communications, teamwork, leadership) to enhance their participation in these types of interdisciplinary projects. This semester-long course also includes training on research mentoring, helping students work more effectively with their current faculty mentors and build skills to serve as mentors themselves. Discussions of research ethics are integrated throughout the course, which allows participants to partially fulfill graduate training requirements in the responsible conduct of research. This paper will discuss the development of this course, which is based in part on curriculum developed as part of an ongoing training grant from the National Science Foundation. 18 graduate students from Engineering and other STEM disciplines completed the course in Spring 2019, and we will present data gathered from these participants along with lessons learned and suggestions for institutions interested in adapting these open-source curriculum materials for their own use. Students completed pre- and post-course evaluations, which asked about their expectations and reasons for participating in the course at the outset and examined their experiences and learning at the end. Overall, students reported that the course content was highly relevant to their daily work and that they were highly satisfied with the content of all three major focus areas (communications, teamwork, leadership). Participants also reported that the structure and the pacing of the course were appropriate, and that the experience had met their expectations. The results related to changes in students’ knowledge indicate that the course was effective in increasing participants understanding of and ability to employ professional skills for communications, teamwork and leadership. Statistical analyses were conducted by creating latent constructs for each item as applicable and then running paired t-tests. The evaluation also demonstrated increases in students’ interest, knowledge and confidence of the professional skills offered in the course. 
    more » « less
  3. This paper describes the development of a facilitator training program that prepares volunteers to offer interactive workshops to build professional skills. This effort to “train the trainers” is part of the CyberAmbassadors workforce development project funded by the National Science Foundation (NSF). The overarching goal of the CyberAmbassadors project is to develop professional skills training that helps participants collaborate more effectively in interdisciplinary settings. The core curriculum for participants includes 20+ hours of materials and activities to build communications, teamwork, and leadership skills. The “train the trainers” project described here is a complementary effort to prepare STEM professionals to facilitate these CyberAmbassadors professional skills trainings for their own workplaces and communities. The facilitator training program was developed and tested with two cohorts, totaling more than 50 participants. Over the course of two days of in-person training, new facilitators had opportunities to experience the core curriculum as participants; to practice facilitation skills and lead group activities; to discuss practical and logistical aspects of offering training in their own communities; and to become familiar with the underlying pedagogy, learning goals, and modular structure of the professional skills curriculum. Surveys were used to collect feedback and evaluate participants’ satisfaction with the CyberAmbassadors professional skills curriculum; their self-assessment of facilitation and professional skills before and after the training; and feedback on the facilitator training experience. Responses from the first cohort of participants were used to refine the facilitator training program and it was offered to a second group of volunteers six months later. In the intervening time, several facilitators from the first cohort implemented CyberAmbassadors trainings at academic institutions, professional conferences, and industry workplaces. Participant surveys were used to provide feedback to the volunteer facilitators and to assist the project coordinators in identifying areas where additional training or support might be helpful. These lessons were used to improve the facilitator training program for the second cohort, and we recruited some of the original volunteers to help lead the second “train the trainers” experience. This approach both provides newer facilitators with additional experience and expands the number of individuals who can “train the trainers” and help to propagate the program for future participants. In addition to describing the experiences and results from this “train the trainers” effort, this paper details the information, planning tools, and supports that are incorporated throughout the CyberAmbassadors professional skills curriculum materials to assist facilitators in offering these trainings. Lessons learned from this project can be adapted to other professional education efforts, both in terms of preparing new instructors and in helping trained facilitators better understand and meet the needs of their audience. 
    more » « less
  4. Seagroves, Scott ; Barnes, Austin ; Metevier, Anne ; Porter, Jason ; Hunter, Lisa (Ed.)
    To create and achieve awesome things in the world together, STEM (science, technology, engineering and mathematics) professionals need to be able to lead effectively. Leadership can be thought of as “a process of social influence through which an individual enlists and mobilizes the aid of others in the attainment of a collective goal” (Chemers, 2001). In the Institute for Scientist & Engineers Educators’ Professional Development Program (PDP), STEM graduate students and postdocs learned, practiced, and reflected on leadership skills and strategies explicitly. Design Team Leaders (DTLs) practiced leading their teams, all participants facilitated inquiry (led their students in learning), and some (in later years) learned through the inclusive leadership PDP strand. In this panel paper, we reflect on what we learned from these experiences and discuss how we apply PDP leadership training daily in our work beyond the PDP. We review key principles about inclusive leadership, such as building an image as a credible leader; how to lead meetings; and how to build feelings of motivation, belonging, trust, and shared ownership among team members. We also share case studies of our experiences applying PDP leadership training in roles as co-director for an African summer school, facilitator for a physics equity project, middle/high school math and science teacher, mentor for new teachers, teaching professor and online curriculum designer, and project manager for a non-profit. Last, we offer recommendations for stakeholders who want to support STEM graduate students’ and postdocs’ development as inclusive leaders. 
    more » « less
  5. null (Ed.)
    Many university engineering programs require their students to complete a senior capstone experience to equip them with the knowledge and skills they need to succeed after graduation. Such capstone experiences typically integrate knowledge and skills learned cumulatively in the degree program, often engaging students in projects outside of the classroom. As part of an initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Funded by a grant from the National Science Foundation’s Revolutionizing Engineering Departments (RED) program, this departmental transformation (referred to as the Arch initiative) is aiming to develop a culture of adaptation and a curriculum support for inclusive excellence and innovation to address the complex challenges faced by our society. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. The goal of the Springer course sequence is to expose students to the “big picture” of civil engineering while developing student skills in professionalism, communication, and teamwork through real-world projects and hands-on activities. The expectation is that the Springer course sequence will allow faculty to better engage students at the beginning of their studies and help them understand how future courses contribute to the overall learning outcomes of a degree in civil engineering. The Springer course sequence is team-taught by faculty from both civil engineering and communication, and exposes students to all of the civil engineering subdisciplines. Through a project-based learning approach, Springer courses mimic capstone in that students work on a practical application of civil engineering concepts throughout the semester in a way that challenges students to incorporate tools that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first of the Springer courses (Springer 1; n=11) introduced students to three civil engineering subdisciplines: construction management, hydrology, and transportation. The remaining subdisciplines will be covered in a follow-on Springer 2 pilot.. The project for Springer 1 involved designing a small parking lot for a church located adjacent to campus. Following initial instruction in civil engineering topics related to the project, students worked in teams to develop conceptual project designs. A design charrette allowed students to interact with different stakeholders to assess their conceptual designs and incorporate stakeholder input into their final designs. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. An overview of the Springer 2 course is also provided. The feedback from the SALG indicated positive attitudes towards course activities and content, and that students found interaction with project stakeholders during the design charrette especially beneficial. Challenges for full scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed. 
    more » « less