skip to main content

Title: Collaborative Robotics Toolkit (CRTK): Open Software Framework for Surgical Robotics Research
Robot-assisted minimally invasive surgery has made a substantial impact in operating rooms over the past few decades with their high dexterity, small tool size, and impact on adoption of minimally invasive techniques. In recent years, intelligence and different levels of surgical robot autonomy have emerged thanks to the medical robotics endeavors at numerous academic institutions and leading surgical robot companies. To accelerate interaction within the research community and prevent repeated development, we propose the Collaborative Robotics Toolkit (CRTK), a common API for the RAVEN-II and da Vinci Research Kit (dVRK) - two open surgical robot platforms installed at more than 40 institutions worldwide. CRTK has broadened to include other robots and devices, including simulated robotic systems and industrial robots. This common API is a community software infrastructure for research and education in cutting edge human-robot collaborative areas such as semi-autonomous teleoperation and medical robotics. This paper presents the concepts, design details and the integration of CRTK with physical robot systems and simulation platforms.
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
1637789
Publication Date:
NSF-PAR ID:
10204120
Journal Name:
IEEE International Conference on Robotic Computing (IRC)
Page Range or eLocation-ID:
48-55
Sponsoring Org:
National Science Foundation
More Like this
  1. Robot-assisted minimally invasive surgery has made a substantial impact in operating rooms over the past few decades with their high dexterity, small tool size, and impact on adoption of minimally invasive techniques. In recent years, intelligence and different levels of surgical robot autonomy have emerged thanks to the medical robotics endeavors at numerous academic institutions and leading surgical robot companies. To accelerate interaction within the research community and prevent repeated development, we propose the Collaborative Robotics Toolkit (CRTK), a common API for the RAVEN-II and da Vinci Research Kit (dVRK) - two open surgical robot platforms installed at more than 40 institutions worldwide. CRTK has broadened to include other robots and devices, including simulated robotic systems and industrial robots. This common API is a community software infrastructure for research and education in cutting edge human-robot collaborative areas such as semi-autonomous teleoperation and medical robotics. This paper presents the concepts, design details and the integration of CRTK with physical robot systems and simulation platforms.
  2. ABSTRACT Introduction Short response time is critical for future military medical operations in austere settings or remote areas. Such effective patient care at the point of injury can greatly benefit from the integration of semi-autonomous robotic systems. To achieve autonomy, robots would require massive libraries of maneuvers collected with the goal of training machine learning algorithms. Although this is attainable in controlled settings, obtaining surgical data in austere settings can be difficult. Hence, in this article, we present the Dexterous Surgical Skill (DESK) database for knowledge transfer between robots. The peg transfer task was selected as it is one of the six main tasks of laparoscopic training. In addition, we provide a machine learning framework to evaluate novel transfer learning methodologies on this database. Methods A set of surgical gestures was collected for a peg transfer task, composed of seven atomic maneuvers referred to as surgemes. The collected Dexterous Surgical Skill dataset comprises a set of surgical robotic skills using the four robotic platforms: Taurus II, simulated Taurus II, YuMi, and the da Vinci Research Kit. Then, we explored two different learning scenarios: no-transfer and domain-transfer. In the no-transfer scenario, the training and testing data were obtained from the samemore »domain; whereas in the domain-transfer scenario, the training data are a blend of simulated and real robot data, which are tested on a real robot. Results Using simulation data to train the learning algorithms enhances the performance on the real robot where limited or no real data are available. The transfer model showed an accuracy of 81% for the YuMi robot when the ratio of real-tosimulated data were 22% to 78%. For the Taurus II and the da Vinci, the model showed an accuracy of 97.5% and 93%, respectively, training only with simulation data. Conclusions The results indicate that simulation can be used to augment training data to enhance the performance of learned models in real scenarios. This shows potential for the future use of surgical data from the operating room in deployable surgical robots in remote areas.« less
  3. Cyber-physical systems for robotic surgery have enabled minimally invasive procedures with increased precision and shorter hospitalization. However, with increasing complexity and connectivity of software and major involvement of human operators in the supervision of surgical robots, there remain significant challenges in ensuring patient safety. This paper presents a safety monitoring system that, given the knowledge of the surgical task being performed by the surgeon, can detect safety-critical events in real-time. Our approach integrates a surgical gesture classifier that infers the operational context from the time-series kinematics data of the robot with a library of erroneous gesture classifiers that given a surgical gesture can detect unsafe events. Our experiments using data from two surgical platforms show that the proposed system can detect unsafe events caused by accidental or malicious faults within an average reaction time window of 1,693 milliseconds and F1 score of 0.88 and human errors within an average reaction time window of 57 milliseconds and F1 score of 0.76.
  4. The unprecedented shock caused by the COVID-19 pandemic has severely influenced the delivery of regular healthcare services. Most non-urgent medical activities, including elective surgeries, have been paused to mitigate the risk of infection and to dedicate medical resources to managing the pandemic. In this regard, not only surgeries are substantially influenced, but also pre- and post-operative assessment of patients and training for surgical procedures have been significantly impacted due to the pandemic. Many countries are planning a phased reopening, which includes the resumption of some surgical procedures. However, it is not clear how the reopening safe-practice guidelines will impact the quality of healthcare delivery. This perspective article evaluates the use of robotics and AI in 1) robotics-assisted surgery, 2) tele-examination of patients for pre- and post-surgery, and 3) tele-training for surgical procedures. Surgeons interact with a large number of staff and patients on a daily basis. Thus, the risk of infection transmission between them raises concerns. In addition, pre- and post-operative assessment also raises concerns about increasing the risk of disease transmission, in particular, since many patients may have other underlying conditions, which can increase their chances of mortality due to the virus. The pandemic has also limited the timemore »and access that trainee surgeons have for training in the OR and/or in the presence of an expert. In this article, we describe existing challenges and possible solutions and suggest future research directions that may be relevant for robotics and AI in addressing the three tasks mentioned above.« less
  5. Current commercially available robotic minimally invasive surgery (RMIS) platforms provide no haptic feedback of tool interactions with the surgical environment. As a consequence, novice robotic surgeons must rely exclusively on visual feedback to sense their physical interactions with the surgical environment. This technical limitation can make it challenging and time-consuming to train novice surgeons to proficiency in RMIS. Extensive prior research has demonstrated that incorporating haptic feedback is effective at improving surgical training task performance. However, few studies have investigated the utility of providing feedback of multiple modalities of haptic feedback simultaneously (multi-modality haptic feedback) in this context, and these studies have presented mixed results regarding its efficacy. Furthermore, the inability to generalize and compare these mixed results has limited our ability to understand why they can vary significantly between studies. Therefore, we have developed a generalized, modular multi-modality haptic feedback and data acquisition framework leveraging the real-time data acquisition and streaming capabilities of the Robot Operating System (ROS). In our preliminary study using this system, participants complete a peg transfer task using a da Vinci robot while receiving haptic feedback of applied forces, contact accelerations, or both via custom wrist-worn haptic devices. Results highlight the capability of our systemmore »in running systematic comparisons between various single and dual-modality haptic feedback approaches.« less