skip to main content


Title: Continuously variable emission for mechanical deformation induced radiative cooling
Abstract

Passive radiative cooling, drawing heat energy of objects to the cold outer space through the atmospheric transparent window, is significant for reducing the energy consumption of buildings. Daytime and nighttime radiative cooling have been extensively investigated in the past. However, radiative cooling which can continuously regulate its cooling temperature, like a valve, according to human need is rarely reported. In this study, we propose a reconfigurable photonic structure, based on the effective medium theory and semi-analytical calculations, for the adaptive radiative cooling by continuous variation of the emission spectra in the atmospheric window. This is realized by the deformation of a one-dimensional polydimethylsiloxane (PDMS) grating and nanoparticle-embedded PDMS thin film when subjected to mechanical stress/strain. The proposed structure reaches different stagnation temperatures under certain strains. A dynamic tuning in emissivity under different strains results in a continuously variable “ON”/“OFF” mode in a particular atmospheric window that corresponds to the deformation-induced fluctuation of the operating temperatures of the reconfigurable nanophotonic structure.

 
more » « less
Award ID(s):
1941743
NSF-PAR ID:
10204308
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Materials
Volume:
1
Issue:
1
ISSN:
2662-4443
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Passive daytime radiative cooling (PDRC) is a promising energy-saving cooling method to cool objects without energy consumption. Although numerous PDRC materials and structures have been proposed to achieve sub-ambient temperatures, the technique faces unprecedented challenges brought on by complicated and expensive fabrication. Herein, inspired by traditional Chinese oil-paper umbrellas, we develop a self-cleaning and self-cooling oil-foam composite (OFC) made of recycled polystyrene foam and tung oil to simultaneously achieve efficient passive radiative cooling and enhanced thermal dissipation of objects. The OFCs show high solar reflectance (0.90) and high mid-infrared thermal emittance (0.89) during the atmospheric transparent window, contributing to a sub-ambient temperature drop of ∼5.4 °C and cooling power of 86 W m −2 under direct solar irradiance. Additionally, the worldwide market of recycled packaging plastics can provide low-cost raw materials, further eliminating the release of plastics into the environment. The OFC offers an energy-efficient, cost-effective and environmentally friendly candidate for building cooling applications and provides a value-added path for plastic recycling. 
    more » « less
  2. Abstract

    Radiative cooling is an emerging cooling technology that can passively release heat to the environment. To obtain a subambient cooling effect during the daytime, chemically engineered structural materials are widely explored to simultaneously reject sunlight and preserve strong thermal emission. However, many previously reported fabrication processes involve hazardous chemicals, which can hinder a material's ability to be mass produced. In order to eliminate the hazardous chemicals used in the fabrication of previous works, this article reports a white polydimethylsiloxane (PDMS) sponge fabricated by a sustainable process using microsugar templates. By substituting the chemicals for sugar, the manufacturing procedure produces zero toxic waste and can also be endlessly recycled via methods widely used in the sugar industry. The obtained porous PDMS exhibits strong visible scattering and thermal emission, resulting in an efficient temperature reduction of 4.6 °C and cooling power of 43 W m−2under direct solar irradiation. In addition, due to the air‐filled voids within the PDMS sponge, its thermal conductivity remains low at 0.06 W (m K)−1. This unique combination of radiative cooling and thermal insulation properties can efficiently suppress the heat exchange with the solar‐heated rooftop or the environment, representing a promising future for new energy‐efficient building envelope material.

     
    more » « less
  3. In a recent study, the authors hypothesize that the Clausius–Clapeyron relation provides a strong constraint on the temperature of the extratropical tropopause and hence the depth of mixing by extratropical eddies. The hypothesis is a generalization of the fixed-anvil temperature hypothesis to the global atmospheric circulation. It posits that the depth of robust mixing by extratropical eddies is limited by radiative cooling by water vapor—and hence saturation vapor pressures—in areas of sinking motion. The hypothesis implies that 1) radiative cooling by water vapor constrains the vertical structure and amplitude of extratropical dynamics and 2) the extratropical tropopause should remain at roughly the same temperature and lift under global warming. Here the authors test the hypothesis in numerical simulations run on an aquaplanet general circulation model (GCM) and a coupled atmosphere–ocean GCM (AOGCM). The extratropical cloud-top height, wave driving, and lapse-rate tropopause all shift upward but remain at roughly the same temperature when the aquaplanet GCM is forced by uniform surface warming of +4 K and when the AOGCM is forced by RCP8.5 scenario emissions. “Locking” simulations run on the aquaplanet GCM further reveal that 1) holding the water vapor concentrations input into the radiation code fixed while increasing surface temperatures strongly constrains the rise in the extratropical tropopause, whereas 2) increasing the water vapor concentrations input into the radiation code while holding surface temperatures fixed leads to robust rises in the extratropical tropopause. Together, the results suggest that roughly invariant extratropical tropopause temperatures constitutes an additional “robust response” of the climate system to global warming.

     
    more » « less
  4. Abstract

    The rheology of oceanic lithosphere is important to our understanding of mantle dynamics and to the emergence and manifestations of plate tectonics. Data from experimental rock mechanics suggest rheology is dominated by three different deformation mechanisms including frictional sliding, low‐temperature plasticity, and high‐temperature creep, from shallow depths at relatively cold temperatures to large depths at relatively high temperatures. However, low‐temperature plasticity is poorly understood. This study further constrains low‐temperature plasticity by comparing observations of flexure at the Hawaiian Islands to predictions from 3‐D viscoelastic loading models with a realistic lithospheric rheology of frictional sliding, low‐temperature plasticity, and high‐temperature creep. We find that previously untested flow laws significantly underpredict the amplitude and overpredict the wavelength of flexure at Hawaii. These flow laws can, however, reproduce observations if they are weakened by a modest reduction (25–40%) in the plastic activation energy. Lithospheric rheology is strongly temperature dependent, and so we explore uncertainties in the thermal structure with different conductive cooling models and convection simulations of plume‐lithosphere interactions. Convection simulations show that thermal erosion from a plume only perturbs the lithospheric temperature significantly at large depths so that when it is added to the thermal structure, it produces a small increase in deflection. In addition, defining the temperature profile by the cooling plate model produces only modest weakening relative to the cooling half‐space model. Therefore, variation of the thermal structure does not appear to be a viable means of bringing laboratory‐derived flow laws for low‐temperature plasticity into agreement with geophysical field observations and modeling.

     
    more » « less
  5. We propose a classification scheme for nocturnal atmospheric boundary layers and apply it to investigate the spatio‐temporal structure of air temperature and wind speed in a shallow valley during the Shallow Cold Pool Experiment. This field campaign was the first to collect spatially continuous temperature and wind information at high resolution (1 s, 0.25 m) using the distributed temperature sensing technique across a 220 m long transect at three heights (0.5, 1.0, 2.0 m). The night‐time classification scheme was motivated by a surface energy balance and used a combination of static stability, wind regime and longwave radiative forcing as quantities to determine physically meaningful boundary‐layer regimes. Out of all potential combinations of these three quantities, 14 night‐time classes contained observations, of which we selected three for detailed analysis and comparison.

    The three classes represent a transition from mechanical to radiative forcing. The first night class represents conditions with strong dynamic forcing caused by locally induced lee turbulence dominating near‐surface temperatures across the shallow valley. The second night class was a concurrence of enhanced dynamic mixing due to significant winds at the valley shoulders and cold‐air pooling at the bottom of the shallow valley as a result of strong radiative cooling. The third night class was characteristic of weak winds eliminating the impact of mechanical mixing but emphasizing the formation and pooling of cold air at the valley bottom.

    The proposed night‐time classification scheme was found to sort the experimental data into physically meaningful regimes of surface flow and transport. It is suitable to stratify short‐ and long‐term experimental data for ensemble averaging and to identify case studies.

     
    more » « less