skip to main content

Title: Shearing-box simulations of MRI-driven turbulence in weakly collisional accretion discs
ABSTRACT We present a systematic shearing-box investigation of magnetorotational instability (MRI)-driven turbulence in a weakly collisional plasma by including the effects of an anisotropic pressure stress, i.e. anisotropic (Braginskii) viscosity. We constrain the pressure anisotropy (Δp) to lie within the stability bounds that would be otherwise imposed by kinetic microinstabilities. We explore a broad region of parameter space by considering different Reynolds numbers and magnetic-field configurations, including net vertical flux, net toroidal-vertical flux, and zero net flux. Remarkably, we find that the level of turbulence and angular-momentum transport are not greatly affected by large anisotropic viscosities: the Maxwell and Reynolds stresses do not differ much from the MHD result. Angular-momentum transport in Braginskii MHD still depends strongly on isotropic dissipation, e.g. the isotropic magnetic Prandtl number, even when the anisotropic viscosity is orders of magnitude larger than the isotropic diffusivities. Braginskii viscosity nevertheless changes the flow structure, rearranging the turbulence to largely counter the parallel rate of strain from the background shear. We also show that the volume-averaged pressure anisotropy and anisotropic viscous transport decrease with increasing isotropic Reynolds number (Re); e.g. in simulations with net vertical field, the ratio of anisotropic to Maxwell stress (αA/αM) decreases from ∼0.5 to ∼0.1 as we move from Re ∼ 103 to Re ∼ 104, while 〈4$\pi$Δp/B2〉 → 0. Anisotropic transport may thus become negligible at high Re. Anisotropic viscosity nevertheless becomes the dominant source of heating at large Re, accounting for ${\gtrsim } 50 {{\ \rm per\ cent}}$ of the plasma heating. We conclude by briefly discussing the implications of our results for radiatively inefficient accretion flows on to black holes.  more » « less
Award ID(s):
1804048 1715054
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
4013 to 4029
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pressure anisotropy can strongly influence the dynamics of weakly collisional, high-beta plasmas, but its effects are missed by standard magnetohydrodynamics (MHD). Small changes to the magnetic-field strength generate large pressure-anisotropy forces, heating the plasma, driving instabilities and rearranging flows, even on scales far above the particles’ gyroscales where kinetic effects are traditionally considered most important. Here, we study the influence of pressure anisotropy on turbulent plasmas threaded by a mean magnetic field (Alfvénic turbulence). Extending previous results that were concerned with Braginskii MHD, we consider a wide range of regimes and parameters using a simplified fluid model based on drift kinetics with heat fluxes calculated using a Landau-fluid closure. We show that viscous (pressure-anisotropy) heating dissipates between a quarter (in collisionless regimes) and half (in collisional regimes) of the turbulent-cascade power injected at large scales; this does not depend strongly on either plasma beta or the ion-to-electron temperature ratio. This will in turn influence the plasma's thermodynamics by regulating energy partition between different dissipation channels (e.g. electron and ion heat). Due to the pressure anisotropy's rapid dynamic feedback onto the flows that create it – an effect we term ‘magneto-immutability’ – the viscous heating is confined to a narrow range of scales near the forcing scale, supporting a nearly conservative, MHD-like inertial-range cascade, via which the rest of the energy is transferred to small scales. Despite the simplified model, our results – including the viscous heating rate, distributions and turbulent spectra – compare favourably with recent hybrid-kinetic simulations. This is promising for the more general use of extended-fluid (or even MHD) approaches to model weakly collisional plasmas such as the intracluster medium, hot accretion flows and the solar wind.

    more » « less

    The magnetorotational instability (MRI) plays a crucial role in regulating the accretion efficiency in astrophysical accretion discs. In low-luminosity discs around black holes, such as Sgr A* and M87, Coulomb collisions are infrequent, making the MRI physics effectively collisionless. The collisionless MRI gives rise to kinetic plasma effects that can potentially affect its dynamic and thermodynamic properties. We present 2D and 3D particle-in-cell (PIC) plasma simulations of the collisionless MRI in stratified discs using shearing boxes with net vertical field. We use pair plasmas, with initial β = 100 and concentrate on subrelativistic plasma temperatures (kBT ≲ mc2). Our 2D and 3D runs show disc expansion, particle and magnetic field outflows, and a dynamo-like process. They also produce magnetic pressure dominated discs with (Maxwell stress dominated) viscosity parameter α ∼ 0.5–1. By the end of the simulations, the dynamo-like magnetic field tends to dominate the magnetic energy and the viscosity in the discs. Our 2D and 3D runs produce fairly similar results, and are also consistent with previous 3D MHD (magnetohydrodynamic) simulations. Our simulations also show non-thermal particle acceleration, approximately characterized by power-law tails with temperature-dependent spectral indices − p. For temperatures $k_\mathrm{ B}T \sim 0.05-0.3\, mc^2$, we find p ≈ 2.2–1.9. The maximum accelerated particle energy depends on the scale separation between MHD and Larmor-scale plasma phenomena in a way consistent with previous PIC results of magnetic reconnection-driven acceleration. Our study constitutes a first step towards modelling from first principles potentially observable stratified MRI effects in low-luminosity accretion discs around black holes.

    more » « less

    We present a first 3D magnetohydrodynamic (MHD) simulation of oxygen, neon, and carbon shell burning in a rapidly rotating $16\hbox{-}\mathrm{M}_\odot$ core-collapse supernova progenitor. We also run a purely hydrodynamic simulation for comparison. After $\mathord \approx 180\mathrm{s}$ ($\mathord \approx$ 15 and 7 convective turnovers, respectively), the magnetic fields in the oxygen and neon shells achieve saturation at 1011 and 5 × 1010 G. The strong Maxwell stresses become comparable to the radial Reynolds stresses and eventually suppress convection. The suppression of mixing by convection and shear instabilities results in the depletion of fuel at the base of the burning regions, so that the burning shell eventually move outward to cooler regions, thus reducing the energy generation rate. The strong magnetic fields efficiently transport angular momentum outwards, quickly spinning down the rapidly rotating convective oxygen and neon shells and forcing them into rigid rotation. The hydrodynamic model shows complicated redistribution of angular momentum and develops regions of retrograde rotation at the base of the convective shells. We discuss implications of our results for stellar evolution and for the subsequent core-collapse supernova. The rapid redistribution of angular momentum in the MHD model casts some doubt on the possibility of retaining significant core angular momentum for explosions driven by millisecond magnetars. However, findings from multidimensional models remain tentative until stellar evolution calculations can provide more consistent rotation profiles and estimates of magnetic field strengths to initialize multidimensional simulations without substantial numerical transients. We also stress the need for longer simulations, resolution studies, and an investigation of non-ideal effects.

    more » « less
  4. Over three decades of in-situ observations illustrate that the Kelvin–Helmholtz (KH) instability driven by the sheared flow between the magnetosheath and magnetospheric plasma often occurs on the magnetopause of Earth and other planets under various interplanetary magnetic field (IMF) conditions. It has been well demonstrated that the KH instability plays an important role for energy, momentum, and mass transport during the solar-wind-magnetosphere coupling process. Particularly, the KH instability is an important mechanism to trigger secondary small scale (i.e., often kinetic-scale) physical processes, such as magnetic reconnection, kinetic Alfvén waves, ion-acoustic waves, and turbulence, providing the bridge for the coupling of cross scale physical processes. From the simulation perspective, to fully investigate the role of the KH instability on the cross-scale process requires a numerical modeling that can describe the physical scales from a few Earth radii to a few ion (even electron) inertial lengths in three dimensions, which is often computationally expensive. Thus, different simulation methods are required to explore physical processes on different length scales, and cross validate the physical processes which occur on the overlapping length scales. Test particle simulation provides such a bridge to connect the MHD scale to the kinetic scale. This study applies different test particle approaches and cross validates the different results against one another to investigate the behavior of different ion species (i.e., H+ and O+), which include particle distributions, mixing and heating. It shows that the ion transport rate is about 10 25  particles/s, and mixing diffusion coefficient is about 10 10  m 2  s −1 regardless of the ion species. Magnetic field lines change their topology via the magnetic reconnection process driven by the three-dimensional KH instability, connecting two flux tubes with different temperature, which eventually causes anisotropic temperature in the newly reconnected flux. 
    more » « less

    Stars form from the gravitational collapse of turbulent, magnetized molecular cloud cores. Our non-ideal MHD simulations reveal that the intrinsically anisotropic magnetic resistance to gravity during the core collapse naturally generates dense gravomagneto sheetlets within inner protostellar envelopes – disrupted versions of classical sheet-like pseudo-discs. They are embedded in a magnetically dominant background, where less dense materials flow along the local magnetic field lines and accumulate in the dense sheetlets. The sheetlets, which feed the disc predominantly through its upper and lower surfaces, are the primary channels for mass and angular momentum transfer from the envelope to the disc. The protostellar disc inherits a small fraction (up to 10 per cent) of the magnetic flux from the envelope, resulting in a disc-averaged net vertical field strength of 1–10 mG and a somewhat stronger toroidal field, potentially detectable through ALMA Zeeman observations. The inherited magnetic field from the envelope plays a dominant role in disc angular momentum evolution, enabling the formation of gravitationally stable discs in cases where the disc field is relatively well-coupled to the gas. Its influence remains significant even in marginally gravitationally unstable discs formed in the more magnetically diffusive cases, removing angular momentum at a rate comparable to or greater than that caused by spiral arms. The magnetically driven disc evolution is consistent with the apparent scarcity of prominent spirals capable of driving rapid accretion in deeply embedded protostellar discs. The dense gravomagneto sheetlets observed in our simulations may correspond to the ‘accretion streamers’ increasingly detected around protostars.

    more » « less