Abstract Previously we demonstrated that the magnetorotational instability (MRI) grows vigorously in eccentric disks, much as it does in circular disks, and we investigated the nonlinear development of the eccentric MRI without vertical gravity. Here we explore how vertical gravity influences the magnetohydrodynamic (MHD) turbulence stirred by the eccentric MRI. Similar to eccentric disks without vertical gravity, the ratio of Maxwell stress to pressure, or the Shakura–Sunyaevαparameter, remains ∼10−2, and the local sign flip in the Maxwell stress persists. Vertical gravity also introduces two new effects. Strong vertical compression near pericenter amplifies reconnection and dissipation, weakening the magnetic field. Angular momentum transport by MHD stresses broadens the mass distribution over eccentricity at much faster rates than without vertical gravity; as a result, spatial distributions of mass and eccentricity can be substantially modified in just ∼5 to 10 orbits. MHD stresses in the eccentric debris of tidal disruption events may power emission ≳1 yr after disruption. 
                        more » 
                        « less   
                    
                            
                            Shearing-box simulations of MRI-driven turbulence in weakly collisional accretion discs
                        
                    
    
            ABSTRACT We present a systematic shearing-box investigation of magnetorotational instability (MRI)-driven turbulence in a weakly collisional plasma by including the effects of an anisotropic pressure stress, i.e. anisotropic (Braginskii) viscosity. We constrain the pressure anisotropy (Δp) to lie within the stability bounds that would be otherwise imposed by kinetic microinstabilities. We explore a broad region of parameter space by considering different Reynolds numbers and magnetic-field configurations, including net vertical flux, net toroidal-vertical flux, and zero net flux. Remarkably, we find that the level of turbulence and angular-momentum transport are not greatly affected by large anisotropic viscosities: the Maxwell and Reynolds stresses do not differ much from the MHD result. Angular-momentum transport in Braginskii MHD still depends strongly on isotropic dissipation, e.g. the isotropic magnetic Prandtl number, even when the anisotropic viscosity is orders of magnitude larger than the isotropic diffusivities. Braginskii viscosity nevertheless changes the flow structure, rearranging the turbulence to largely counter the parallel rate of strain from the background shear. We also show that the volume-averaged pressure anisotropy and anisotropic viscous transport decrease with increasing isotropic Reynolds number (Re); e.g. in simulations with net vertical field, the ratio of anisotropic to Maxwell stress (αA/αM) decreases from ∼0.5 to ∼0.1 as we move from Re ∼ 103 to Re ∼ 104, while 〈4$$\pi$$Δp/B2〉 → 0. Anisotropic transport may thus become negligible at high Re. Anisotropic viscosity nevertheless becomes the dominant source of heating at large Re, accounting for $${\gtrsim } 50 {{\ \rm per\ cent}}$$ of the plasma heating. We conclude by briefly discussing the implications of our results for radiatively inefficient accretion flows on to black holes. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10204599
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 486
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 4013 to 4029
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Pressure anisotropy can strongly influence the dynamics of weakly collisional, high-beta plasmas, but its effects are missed by standard magnetohydrodynamics (MHD). Small changes to the magnetic-field strength generate large pressure-anisotropy forces, heating the plasma, driving instabilities and rearranging flows, even on scales far above the particles’ gyroscales where kinetic effects are traditionally considered most important. Here, we study the influence of pressure anisotropy on turbulent plasmas threaded by a mean magnetic field (Alfvénic turbulence). Extending previous results that were concerned with Braginskii MHD, we consider a wide range of regimes and parameters using a simplified fluid model based on drift kinetics with heat fluxes calculated using a Landau-fluid closure. We show that viscous (pressure-anisotropy) heating dissipates between a quarter (in collisionless regimes) and half (in collisional regimes) of the turbulent-cascade power injected at large scales; this does not depend strongly on either plasma beta or the ion-to-electron temperature ratio. This will in turn influence the plasma's thermodynamics by regulating energy partition between different dissipation channels (e.g. electron and ion heat). Due to the pressure anisotropy's rapid dynamic feedback onto the flows that create it – an effect we term ‘magneto-immutability’ – the viscous heating is confined to a narrow range of scales near the forcing scale, supporting a nearly conservative, MHD-like inertial-range cascade, via which the rest of the energy is transferred to small scales. Despite the simplified model, our results – including the viscous heating rate, distributions and turbulent spectra – compare favourably with recent hybrid-kinetic simulations. This is promising for the more general use of extended-fluid (or even MHD) approaches to model weakly collisional plasmas such as the intracluster medium, hot accretion flows and the solar wind.more » « less
- 
            The magnetohydrodynamic (MHD) equations, as a collisional fluid model that remains in local thermodynamic equilibrium (LTE), have long been used to describe turbulence in myriad space and astrophysical plasmas. Yet, the vast majority of these plasmas, from the solar wind to the intracluster medium (ICM) of galaxy clusters, are only weakly collisional at best, meaning that significant deviations from LTE are not only possible but common. Recent studies have demonstrated that the kinetic physics inherent to this weakly collisional regime can fundamentally transform the evolution of such plasmas across a wide range of scales. Here, we explore the consequences of pressure anisotropy and Larmor-scale instabilities for collisionless,$$\beta \gg 1$$, turbulence, focusing on the role of a self-organizational effect known as ‘magneto-immutability’. We describe this self-organization analytically through a high-$$\beta$$, reduced ordering of the Chew–Goldberger–Low-MHD (CGL-MHD) equations, finding that it is a robust inertial-range effect that dynamically suppresses magnetic-field-strength fluctuations, anisotropic-pressure stresses and dissipation due to heat fluxes. As a result, the turbulent cascade of Alfvénic fluctuations continues below the putative viscous scale to form a robust, nearly conservative, MHD-like inertial range. These findings are confirmed numerically via Landau-fluid CGL-MHD turbulence simulations that employ a collisional closure to mimic the effects of microinstabilities. We find that microinstabilities occupy a small ($${\sim }5\,\%$$) volume-filling fraction of the plasma, even when the pressure anisotropy is driven strongly towards its instability thresholds. We discuss these results in the context of recent predictions for ion-vs-electron heating in low-luminosity accretion flows and observations implying suppressed viscosity in ICM turbulence.more » « less
- 
            null (Ed.)We consider the developed turbulence of capillary waves on shallow water. Analytic theory shows that an isotropic cascade spectrum is unstable with respect to small angular perturbations, in particular, to spontaneous breakdown of the reflection symmetry and generation of nonzero momentum. By computer modeling we show that indeed a random pumping, generating on average zero momentum, produces turbulence with a nonzero total momentum. A strongly anisotropic large-scale pumping produces turbulence whose degree of anisotropy decreases along a cascade. It tends to saturation in the inertial interval and then further decreases in the dissipation interval. Surprisingly, neither the direction of the total momentum nor the direction of the compensated spectrum anisotropy is locked by our square box preferred directions (side or diagonal) but fluctuate.more » « less
- 
            null (Ed.)We propose that pressure anisotropy causes weakly collisional turbulent plasmas to self-organize so as to resist changes in magnetic-field strength. We term this effect ‘magneto-immutability’ by analogy with incompressibility (resistance to changes in pressure). The effect is important when the pressure anisotropy becomes comparable to the magnetic pressure, suggesting that in collisionless, weakly magnetized (high- $$\unicode[STIX]{x1D6FD}$$ ) plasmas its dynamical relevance is similar to that of incompressibility. Simulations of magnetized turbulence using the weakly collisional Braginskii model show that magneto-immutable turbulence is surprisingly similar, in most statistical measures, to critically balanced magnetohydrodynamic turbulence. However, in order to minimize magnetic-field variation, the flow direction becomes more constrained than in magnetohydrodynamics, and the turbulence is more strongly dominated by magnetic energy (a non-zero ‘residual energy’). These effects represent key differences between pressure-anisotropic and fluid turbulence, and should be observable in the $$\unicode[STIX]{x1D6FD}\gtrsim 1$$ turbulent solar wind.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    