skip to main content

Title: Efficient LiDAR point cloud data encoding for scalable data management within the Hadoop eco-system
This paper introduces a novel LiDAR point cloud data encoding solution that is compact, flexible, and fully supports distributed data storage within the Hadoop distributed computing environment. The proposed data encoding solution is developed based on Sequence File and Google Protocol Buffers. Sequence File is a generic splittable binary file format built in the Hadoop framework for storage of arbitrary binary data. The key challenge in adopting the Sequence File format for LiDAR data is in the strategy for effectively encoding the LiDAR data as binary sequences in a way that the data can be represented compactly, while allowing necessary mutation. For that purpose, a data encoding solution, based on Google Protocol Buffers (a language-neutral, cross-platform, extensible data serialisation framework) was developed and evaluated. Since neither of the underlying technologies is sufficient to completely and efficiently represent all necessary point formats for distributed computing, an innovative fusion of them was required to provide a viable data storage solution. This paper presents the details of such a data encoding implementation and rigorously evaluates the efficiency of the proposed data encoding solution. Benchmarking was done against a straightforward, naive text encoding implementation using a high-density aerial LiDAR scan of a portion of more » Dublin, Ireland. The results demonstrated a 6-times reduction in data volume, a 4-times reduction in database ingestion time, and up to a 5 times reduction in querying time. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1826134
Publication Date:
NSF-PAR ID:
10205029
Journal Name:
2019 IEEE International Conference on Big Data
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The massive amounts of spatio-temporal information often present in LiDAR data sets make their storage, processing, and visualisation computationally demanding. There is an increasing need for systems and tools that support all the spatial and temporal components and the three-dimensional nature of these datasets for effortless retrieval and visualisation. In response to these needs, this paper presents a scalable, distributed database system that is designed explicitly for retrieving and viewing large LiDAR datasets on the web. The ultimate goal of the system is to provide rapid and convenient access to a large repository of LiDAR data hosted in amore »distributed computing platform. The system is composed of multiple, share-nothing nodes operating in parallel. Namely, each node is autonomous and has a dedicated set of processors and memory. The nodes communicate with each other via an interconnected network. The data management system presented in this paper is implemented based on Apache HBase, a distributed key-value datastore within the Hadoop eco-system. HBase is extended with new data encoding and indexing mechanisms to accommodate both the point cloud and the full waveform components of LiDAR data. The data can be consumed by any desktop or web application that communicates with the data repository using the HTTP protocol. The communication is enabled by a web servlet. In addition to the command line tool used for administration tasks, two web applications are presented to illustrate the types of user-facing applications that can be coupled with the data system.« less
  2. In the age of Big Genomics Data, institutions such as the National Human Genome Research Institute (NHGRI) are challenged in their efforts to share volumes of data between researchers, a process that has been plagued by unreliable transfers and slow speeds. These occur due to throughput bottlenecks of traditional transfer technologies. Two factors that affect the effciency of data transmission are the channel bandwidth and the amount of data. Increasing the bandwidth is one way to transmit data effciently, but might not always be possible due to resource limitations. Another way to maximize channel utilization is by decreasing the bitsmore »needed for transmission of a dataset. Traditionally, transmission of big genomic data between two geographical locations is done using general-purpose protocols, such as hypertext transfer protocol (HTTP) and file transfer protocol (FTP) secure. In this paper, we present a novel deep learning-based data minimization algorithm that 1) minimizes the datasets during transfer over the carrier channels; 2) protects the data from the man-in-the-middle (MITM) and other attacks by changing the binary representation (content-encoding) several times for the same dataset: we assign different codewords to the same character in different parts of the dataset. Our data minimization strategy exploits the alphabet limitation of DNA sequences and modifies the binary representation (codeword) of dataset characters using deep learning-based convolutional neural network (CNN) to ensure a minimum of code word uses to the high frequency characters at different time slots during the transfer time. This algorithm ensures transmission of big genomic DNA datasets with minimal bits and latency and yields an effcient and expedient process. Our tested heuristic model, simulation, and real implementation results indicate that the proposed data minimization algorithm is up to 99 times faster and more secure than the currently used content-encoding scheme used in HTTP of the HTTP content-encoding scheme and 96 times faster than FTP on tested datasets. The developed protocol in C# will be available to the wider genomics community and domain scientists.« less
  3. Abstract
    <p>This data set for the manuscript entitled &#34;Design of Peptides that Fold and Self-Assemble on Graphite&#34; includes all files needed to run and analyze the simulations described in the this manuscript in the molecular dynamics software NAMD, as well as the output of the simulations. The files are organized into directories corresponding to the figures of the main text and supporting information. They include molecular model structure files (NAMD psf or Amber prmtop format), force field parameter files (in CHARMM format), initial atomic coordinates (pdb format), NAMD configuration files, Colvars configuration files, NAMD log files, and NAMD output includingMore>>
  4. Sea ice acts as both an indicator and an amplifier of climate change. High spatial resolution (HSR) imagery is an important data source in Arctic sea ice research for extracting sea ice physical parameters, and calibrating/validating climate models. HSR images are difficult to process and manage due to their large data volume, heterogeneous data sources, and complex spatiotemporal distributions. In this paper, an Arctic Cyberinfrastructure (ArcCI) module is developed that allows a reliable and efficient on-demand image batch processing on the web. For this module, available associated datasets are collected and presented through an open data portal. The ArcCI modulemore »offers an architecture based on cloud computing and big data components for HSR sea ice images, including functionalities of (1) data acquisition through File Transfer Protocol (FTP) transfer, front-end uploading, and physical transfer; (2) data storage based on Hadoop distributed file system and matured operational relational database; (3) distributed image processing including object-based image classification and parameter extraction of sea ice features; (4) 3D visualization of dynamic spatiotemporal distribution of extracted parameters with flexible statistical charts. Arctic researchers can search and find arctic sea ice HSR image and relevant metadata in the open data portal, obtain extracted ice parameters, and conduct visual analytics interactively. Users with large number of images can leverage the service to process their image in high performance manner on cloud, and manage, analyze results in one place. The ArcCI module will assist domain scientists on investigating polar sea ice, and can be easily transferred to other HSR image processing research projects.« less
  5. Apache Hadoop is a predominant software framework for distributed compute and storage with capability to handle huge amounts of data, usually referred to as Big Data. This data collected from different enterprises and government agencies often includes private and sensitive information, which needs to be secured from unauthorized access. This paper proposes extensions to the current authorization capabilities offered by Hadoop core and other ecosystem projects, specifically Apache Ranger and Apache Sentry. We present a fine-grained attribute-based access control model, referred as HeABAC, catering to the security and privacy needs of multi-tenant Hadoop ecosystem. The paper reviews the current multi-layeredmore »access control model used primarily in Hadoop core (2.x), Apache Ranger (version 0.6) and Sentry (version 1.7.0), as well as a previously proposed RBAC extension (OT-RBAC). It then presents a formal attribute-based access control model for Hadoop ecosystem, including the novel concept of cross Hadoop services trust. It further highlights different trust scenarios, presents an implementation approach for HeABAC using Apache Ranger and, discusses the administration requirements of HeABAC operational model. Some comprehensive, real-world use cases are also discussed to reflect the application and enforcement of the proposed HeABAC model in Hadoop ecosystem.« less