skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D shaping
Abstract

Responsive soft materials capable of exhibiting various three-dimensional (3D) shapes under the same stimulus are desirable for promising applications including adaptive and reconfigurable soft robots. Here, we report a laser rewritable magnetic composite film, whose responsive shape-morphing behaviors induced by a magnetic field can be digitally and repeatedly reprogrammed by a facile method of direct laser writing. The composite film is made from an elastomer and magnetic particles encapsulated by a phase change polymer. Once the phase change polymer is temporarily melted by transient laser heating, the orientation of the magnetic particles can be re-aligned upon change of a programming magnetic field. By the digital laser writing on selective areas, magnetic anisotropies can be encoded in the composite film and then reprogrammed by repeating the same procedure, thus leading to multimodal 3D shaping under the same actuation magnetic field. Furthermore, we demonstrated their functional applications in assembling multistate 3D structures driven by the magnetic force-induced buckling, fabricating multistate electrical switches for electronics, and constructing reconfigurable magnetic soft robots with locomotion modes of peristalsis, crawling, and rolling.

 
more » « less
Award ID(s):
1825352 1933861
NSF-PAR ID:
10205216
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Shape‐morphing magnetic soft materials, composed of magnetic particles in a soft polymer matrix, can transform shape reversibly, remotely, and rapidly, finding diverse applications in actuators, soft robotics, and biomedical devices. To achieve on‐demand and sophisticated shape morphing, the manufacture of structures with complex geometry and magnetization distribution is highly desired. Here, a magnetic dynamic polymer (MDP) composite composed of hard‐magnetic microparticles in a dynamic polymer network with thermally responsive reversible linkages, which permits functionalities including targeted welding for magnetic‐assisted assembly, magnetization reprogramming, and permanent structural reconfiguration, is reported. These functions not only provide highly desirable structural and material programmability and reprogrammability but also enable the manufacturing of functional soft architected materials such as 3D kirigami with complex magnetization distribution. The welding of magnetic‐assisted modular assembly can be further combined with magnetization reprogramming and permanent reshaping capabilities for programmable and reconfigurable architectures and morphing structures. The reported MDP are anticipated to provide a new paradigm for the design and manufacture of future multifunctional assemblies and reconfigurable morphing architectures and devices.

     
    more » « less
  2. New materials are advancing the field of soft robotics. Composite films of magnetic iron microparticles dispersed in a shape memory polymer matrix are demonstrated for reconfigurable, remotely actuated soft robots. The composite films simultaneously respond to magnetic fields and light. Temporary shapes obtained through combined magnetic actuation and photothermal heating can be locked by switching off the light and magnetic field. Subsequent illumination in the absence of the magnetic field drives recovery of the permanent shape. In cantilevers and flowers, multiple cycles of locking and unlocking are demonstrated. Scrolls show that the permanent shape of the film can be programmed, and they can be frozen in intermediate configurations. Bistable snappers can be magnetically and optically actuated, as well as biased, by controlling the permanent shape. Grabbers can pick up and release objects repeatedly. Simulations of combined photothermal heating and magnetic actuation are useful for guiding the design of new devices. 
    more » « less
  3. The long-ranged interactions induced by magnetic fields and capillary forces in multiphasic fluid–particle systems facilitate the assembly of a rich variety of colloidal structures and materials. We review here the diverse structures assembled from isotropic and anisotropic particles by independently or jointly using magnetic and capillary interactions. The use of magnetic fields is one of the most efficient means of assembling and manipulating paramagnetic particles. By tuning the field strength and configuration or by changing the particle characteristics, the magnetic interactions, dynamics, and responsiveness of the assemblies can be precisely controlled. Concurrently, the capillary forces originating at the fluid–fluid interfaces can serve as means of reconfigurable binding in soft matter systems, such as Pickering emulsions, novel responsive capillary gels, and composites for 3D printing. We further discuss how magnetic forces can be used as an auxiliary parameter along with the capillary forces to assemble particles at fluid interfaces or in the bulk. Finally, we present examples how these interactions can be used jointly in magnetically responsive foams, gels, and pastes for 3D printing. The multiphasic particle gels for 3D printing open new opportunities for making of magnetically reconfigurable and “active” structures. 
    more » « less
  4. Abstract

    Stimuli‐responsive hydrogels with programmable shapes produced by defined patterns of particles are of great interest for the fabrication of small‐scale soft actuators and robots. Patterning the particles in the hydrogels during fabrication generally requires external magnetic or electric fields, thus limiting the material choice for the particles. Acoustically driven particle manipulation, however, solely depends on the acoustic impedance difference between the particles and the surrounding fluid, making it a more versatile method to spatially control particles. Here, an approach is reported by combining direct acoustic force to align photothermal particles and photolithography to spatially immobilize these alignments within a temperature‐responsive poly(N‐isopropylacrylamide) hydrogel to trigger shape deformation under temperature change and light exposure. The spatial distribution of particles can be tuned by the power and frequency of the acoustic waves. Specifically, changing the spacing between the particle patterns and position alters the bending curvature and direction of this composite hydrogel sheet, respectively. Moreover, the orientation (i.e., relative angle) of the particle alignments with respect to the long axis of laser‐cut hydrogel strips governs the bending behaviors and the subsequent shape deformation by external stimuli. This acousto‐photolithography provides a means of spatiotemporal programming of the internal heterogeneity of composite polymeric systems.

     
    more » « less
  5. Abstract

    Soft intelligent structures that are programmed to reshape and reconfigure under magnetic field can find applications such as in soft robotics and biomedical devices. Here, a new class of smart elastomeric architectures that undergo complex reconfiguration and shape change in applied magnetic fields, while floating on the surface of water, is reported. These magnetoactive soft actuators are fabricated by 3D printing with homocomposite silicone capillary ink. The ultrasoft actuators easily deform by the magnetic force exerted on carbonyl iron particles embedded in the silicone, as well as lateral capillary forces. The tensile and compressive moduli of the actuators are easily determined by their topological design through 3D printing. As a result, their responses can be engineered by the interplay of the intensity of the magnetic field gradient and the programmable moduli. 3D printing allows us to fabricate soft architectures with different actuation modes, such as isotropic/anisotropic contraction and multiple shape changes, as well as functional reconfiguration. Meshes that reconfigure in magnetic fields and respond to external stimuli by reshaping could serve as active tissue scaffolds for cell cultures and soft robots mimicking creatures that live on the surface of water.

     
    more » « less