skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning Task-Driven Control Policies via Information Bottlenecks
This paper presents a reinforcement learning approach to synthesizing task-driven control policies for robotic systems equipped with rich sensory modalities (e.g., vision or depth). Standard reinforcement learning algorithms typically produce policies that tightly couple control actions to the entirety of the system's state and rich sensor observations. As a consequence, the resulting policies can often be sensitive to changes in task-irrelevant portions of the state or observations (e.g., changing background colors). In contrast, the approach we present here learns to create a task-driven representation that is used to compute control actions. Formally, this is achieved by deriving a policy gradient-style algorithm that creates an information bottleneck between the states and the task-driven representation; this constrains actions to only depend on task-relevant information. We demonstrate our approach in a thorough set of simulation results on multiple examples including a grasping task that utilizes depth images and a ball-catching task that utilizes RGB images. Comparisons with a standard policy gradient approach demonstrate that the task-driven policies produced by our algorithm are often significantly more robust to sensor noise and task-irrelevant changes in the environment.  more » « less
Award ID(s):
1755038
PAR ID:
10205570
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Robotics: Science and Systems (RSS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Among approaches for provably safe reinforcement learning, Model Predictive Shielding (MPS) has proven effective at complex tasks in continuous, high-dimensional state spaces, by leveraging a backup policy to ensure safety when the learned policy attempts to take risky actions. However, while MPS can ensure safety both during and after training, it often hinders task progress due to the conservative and task-oblivious nature of backup policies. This paper introduces Dynamic Model Predictive Shielding (DMPS), which optimizes reinforcement learning objectives while maintaining provable safety. DMPS employs a local planner to dynamically select safe recovery actions that maximize both short-term progress as well as long-term rewards. Crucially, the planner and the neural policy play a synergistic role in DMPS. When planning recovery actions for ensuring safety, the planner utilizes the neural policy to estimate long-term rewards, allowing it to observe beyond its short-term planning horizon. Conversely, the neural policy under training learns from the recovery plans proposed by the planner, converging to policies that are both high-performing and safe in practice. This approach guarantees safety during and after training, with bounded recovery regret that decreases exponentially with planning horizon depth. Experimental results demonstrate that DMPS converges to policies that rarely require shield interventions after training and achieve higher rewards compared to several state-of-the-art baselines 
    more » « less
  2. Wallach, H (Ed.)
    We study the problem of programmatic reinforcement learning, in which policies are represented as short programs in a symbolic language. Programmatic policies can be more interpretable, generalizable, and amenable to formal verification than neural policies; however, designing rigorous learning approaches for such policies remains a challenge. Our approach to this challenge-a meta-algorithm called PROPEL-is based on three insights. First, we view our learning task as optimization in policy space, modulo the constraint that the desired policy has a programmatic representation, and solve this optimization problem using a form of mirror descent that takes a gradient step into the unconstrained policy space and then projects back onto the constrained space. Second, we view the unconstrained policy space as mixing neural and programmatic representations, which enables employing state-of-the-art deep policy gradient approaches. Third, we cast the projection step as program synthesis via imitation learning, and exploit contemporary combinatorial methods for this task. We present theoretical convergence results for PROPEL and empirically evaluate the approach in three continuous control domains. The experiments show that PROPEL can significantly outperform state-of-the-art approaches for learning programmatic policies. 
    more » « less
  3. Robot arms should be able to learn new tasks. One framework here is reinforcement learning, where the robot is given a reward function that encodes the task, and the robot autonomously learns actions to maximize its reward. Existing approaches to reinforcement learning often frame this problem as a Markov decision process, and learn a policy (or a hierarchy of policies) to complete the task. These policies reason over hundreds of fine-grained actions that the robot arm needs to take: e.g., moving slightly to the right or rotating the end-effector a few degrees. But the manipulation tasks that we want robots to perform can often be broken down into a small number of high-level motions: e.g., reaching an object or turning a handle. In this paper we therefore propose a waypoint-based approach for model-free reinforcement learning. Instead of learning a low-level policy, the robot now learns a trajectory of waypoints, and then interpolates between those waypoints using existing controllers. Our key novelty is framing this waypoint-based setting as a sequence of multi-armed bandits: each bandit problem corresponds to one waypoint along the robot’s motion. We theoretically show that an ideal solution to this reformulation has lower regret bounds than standard frameworks. We also introduce an approximate posterior sampling solution that builds the robot’s motion one waypoint at a time. Results across benchmark simulations and two real-world experiments suggest that this proposed approach learns new tasks more quickly than state-of-the-art baselines. See our website here: https://collab.me.vt.edu/rl-waypoints/ 
    more » « less
  4. Our goal is to develop a principled and general algorithmic framework for task-driven estimation and control for robotic systems. State-of-the-art approaches for controlling robotic systems typically rely heavily on accurately estimating the full state of the robot (e.g., a running robot might estimate joint angles and velocities, torso state, and position relative to a goal). However, full state representations are often excessively rich for the specific task at hand and can lead to significant computational inefficiency and brittleness to errors in state estimation. In contrast, we present an approach that eschews such rich representations and seeks to create task-driven representations. The key technical insight is to leverage the theory of information bottlenecks}to formalize the notion of a "task-driven representation" in terms of information theoretic quantities that measure the minimality of a representation. We propose novel iterative algorithms for automatically synthesizing (offline) a task-driven representation (given in terms of a set of task-relevant variables (TRVs)) and a performant control policy that is a function of the TRVs. We present online algorithms for estimating the TRVs in order to apply the control policy. We demonstrate that our approach results in significant robustness to unmodeled measurement uncertainty both theoretically and via thorough simulation experiments including a spring-loaded inverted pendulum running to a goal location. 
    more » « less
  5. This paper proposes an approach to domain transfer based on a pairwise loss function that helps transfer control policies learned in simulation onto a real robot. We explore the idea in the context of a “category level” manipulation task where a control policy is learned that enables a robot to perform a mating task involving novel objects. We explore the case where depth images are used as the main form of sensor input. Our experimental results demonstrate that proposed method consistently outperforms baseline methods that train only in simulation or that combine real and simulated data in a naive way 
    more » « less