We have studied spectra and angular distribution of emission in Fabry–Perot cavities formed by two silver mirrors separated by a layer of poly (methyl methacrylate) polymer doped with rhodamine 6G (R6G) dye in low ( ) and high ( ) concentrations. The frequency of emission radiated to a cavity mode was larger at large outcoupling angles—the “rainbow” effect. At the same time, the angle of the strongest emission was also determined by the cavity size: the larger the cavity, the larger the angle. The angular distribution of emission is commonly dominated by two symmetrical lobes (located at the intersection of the three-dimensional emission cone with a horizontal plane) pointing to the left and to the right of the normal to the sample. Despite the strong Stokes shift in R6G dye, the branch of the cavity dispersion curve obtained in the emission experiment is positioned above the one obtained in the reflection (extinction) experiment. Some dye molecules are poorly coupled to cavity modes. Their emission has very broad angular distribution with the maximum at . The signatures of strong cavity–exciton coupling were observed at high dye concentration ( ) but not at low concentration ( ). The evidence of the effect of strong coupling on emission is exemplified by a strong difference in the angular distribution of emission in two almost identical cavities, one with and another without strong coupling. Most importantly, we have demonstrated the possibility to control the ground state concentration, the coupling strength, and the dye emission spectra with Q-switched laser pulses.
more »
« less
Strong exciton–plasmon coupling in dye-doped film on a planar hyperbolic metamaterial
We experimentally demonstrate the direct strong coupling between the absorption transition of rhodamine 6G (R6G) dye molecules and the surface plasmon polaritons of a hyperbolic metamaterial (HMM) substrate. The surface plasmon mode was excited by a guided mode of the R6G-doped polymer thin film on the HMM. The coupling strengths of the interactions between the surface plasmon and two molecular exciton modes are greater than the average linewidths of the individual modes indicating a strong coupling regime. This is the first, to the best of our knowledge, experimental demonstration of the direct strong coupling between the resonance mode supported by the HMM and the dye molecules on the HMM surface, not embedded in the HMM structure. The study may provide the foundation for the development of novel planar photonic or electronic devices.
more »
« less
- Award ID(s):
- 1808258
- PAR ID:
- 10205743
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 45
- Issue:
- 24
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 6736
- Size(s):
- Article No. 6736
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper analytically and numerically investigates misalignment and mode-mismatch-induced power coupling coefficients and losses as a function of Hermite–Gauss (HG) mode order. We show that higher-order HG modes are more susceptible to beam perturbations when, for example, coupling into optical cavities: the misalignment and mode-mismatch-induced power coupling losses scale linearly and quadratically with respect to the mode indices, respectively. As a result, the mode-mismatch tolerance for the mode is reduced to a factor of 0.28 relative to the currently used mode. This is a potential hurdle to using higher-order modes to reduce thermal noise in future gravitational-wave detectors.more » « less
-
Plasmonic materials, and their ability to enable strong concentration of optical fields, have offered a tantalizing foundation for the demonstration of sub-diffraction-limit photonic devices. However, practical and scalable plasmonic optoelectronics for real world applications remain elusive. In this work, we present an infrared photodetector leveraging a device architecture consisting of a “designer” epitaxial plasmonic metal integrated with a quantum-engineered detector structure, all in a mature III-V semiconductor material system. Incident light is coupled into surface plasmon-polariton modes at the detector/designer metal interface, and the strong confinement of these modes allows for a sub-diffractive ( ) detector absorber layer thickness, effectively decoupling the detector’s absorption efficiency and dark current. We demonstrate high-performance detectors operating at non-cryogenic temperatures ( ), without sacrificing external quantum efficiency, and superior to well-established and commercially available detectors. This work provides a practical and scalable plasmonic optoelectronic device architecture with real world mid-infrared applications.more » « less
-
The mid-IR spectroscopic properties of doped low-phonon and crystals grown by the Bridgman technique have been investigated. Using optical excitations at and , both crystals exhibited IR emissions at , , , and at room temperature. The mid-IR emission at 4.5 µm, originating from the transition, showed a long emission lifetime of for doped , whereas doped exhibited a shorter lifetime of . The measured emission lifetimes of the state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the transition in doped and were determined to be and , respectively. The results of Judd–Ofelt analysis are presented and discussed.more » « less
-
In terahertz (THz) photonics, there is an ongoing effort to develop thin, compact devices such as dielectric photonic crystal (PhC) slabs with desirable light–matter interactions. However, previous works in THz PhC slabs have been limited to rigid substrates with thicknesses of micrometers. Dielectric PhC slabs have been shown to possess in-plane modes that are excited by external radiation to produce sharp guided-mode resonances with minimal absorption for applications in sensors, optics, and lasers. Here we confirm the existence of guided resonances in a membrane-type THz PhC slab with subwavelength ( ) thicknesses of flexible dielectric polyimide films. The transmittance of the guided resonances was measured for different structural parameters of the unit cell. Furthermore, we exploited the flexibility of the samples to modulate the guided modes for a bend angle of , confirmed experimentally by the suppression of these modes. The mechanical flexibility of the device allows for an additional degree of freedom in system design for high-speed communications, soft wearable photonics, and implantable medical devices.more » « less
An official website of the United States government
