skip to main content


Title: Combined Genome and Transcriptome Analyses of the Ciliate Schmidingerella arcuata (Spirotrichea) Reveal Patterns of DNA Elimination, Scrambling, and Inversion
Abstract Schmidingerella arcuata is an ecologically important tintinnid ciliate that has long served as a model species in plankton trophic ecology. We present a partial micronuclear genome and macronuclear transcriptome resource for S. arcuata, acquired using single-cell techniques, and we report on pilot analyses including functional annotation and genome architecture. Our analysis shows major fragmentation, elimination, and scrambling in the micronuclear genome of S. arcuata. This work introduces a new nonmodel genome resource for the study of ciliate ecology and genomic biology and provides a detailed functional counterpart to ecological research on S. arcuata.  more » « less
Award ID(s):
1924570 1924527
NSF-PAR ID:
10206848
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Phadke, Sujal
Date Published:
Journal Name:
Genome Biology and Evolution
Volume:
12
Issue:
9
ISSN:
1759-6653
Page Range / eLocation ID:
1616 to 1622
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zufall, Rebecca (Ed.)
    Abstract Ciliates are microbial eukaryotes with distinct somatic and germline genomes. Postzygotic development involves extensive remodeling of the germline genome to form somatic chromosomes. Ciliates therefore offer a valuable model for studying the architecture and evolution of programed genome rearrangements. Current studies usually focus on a few model species, where rearrangement features are annotated by aligning reference germline and somatic genomes. Although many high-quality somatic genomes have been assembled, a high-quality germline genome assembly is difficult to obtain due to its smaller DNA content and abundance of repetitive sequences. To overcome these hurdles, we propose a new pipeline, SIGAR (Split-read Inference of Genome Architecture and Rearrangements) to infer germline genome architecture and rearrangement features without a germline genome assembly, requiring only short DNA sequencing reads. As a proof of principle, 93% of rearrangement junctions identified by SIGAR in the ciliate Oxytricha trifallax were validated by the existing germline assembly. We then applied SIGAR to six diverse ciliate species without germline genome assemblies, including Ichthyophthirius multifilii, a fish pathogen. Despite the high level of somatic DNA contamination in each sample, SIGAR successfully inferred rearrangement junctions, short eliminated sequences, and potential scrambled genes in each species. This pipeline enables pilot surveys or exploration of DNA rearrangements in species with limited DNA material access, thereby providing new insights into the evolution of chromosome rearrangements. 
    more » « less
  2. Bumble bees are ecologically and economically important insect pollinators. Three abundant and widespread species in western North America, Bombus bifarius, Bombus vancouverensis, and Bombus vosnesenskii, have been the focus of substantial research relating to diverse aspects of bumble bee ecology and evolutionary biology. We present de novo genome assemblies for each of the three species using hybrid assembly of Illumina and Oxford Nanopore Technologies sequences. All three assemblies are of high quality with large N50s (> 2.2 Mb), BUSCO scores indicating > 98% complete genes, and annotations producing 13,325 - 13,687 genes, comparing favorably with other bee genomes. Analysis of synteny against the most complete bumble bee genome, Bombus terrestris, reveals a high degree of collinearity. These genomes should provide a valuable resource for addressing questions relating to functional genomics and evolutionary biology in these species. 
    more » « less
  3. Abstract

    The bulk of knowledge on marine ciliates is from shallow and/or sunlit waters. We studied ciliate diversity and distribution across epi‐ and mesopelagic oceanic waters, using DNA metabarcoding and phylogeny‐based metrics. We analyzed sequences of the 18S rRNA gene (V4 region) from 369 samples collected at 12 depths (0–1000 m) at the Bermuda Atlantic Time‐series Study site of the Sargasso Sea (North Atlantic) monthly for 3 years. The comprehensive depth and temporal resolutions analyzed led to three main findings. First, there was a gradual but significant decrease in alpha‐diversity (based on Faith's phylogenetic diversity index) from surface to 1000‐m waters. Second, multivariate analyses of beta‐diversity (based on UniFrac distances) indicate that ciliate assemblages change significantly from photic to aphotic waters, with a switch from Oligotrichea to Oligohymenophorea prevalence. Third, phylogenetic placement of sequence variants and clade‐level correlations (EPA‐ng and GAPPA algorithms) show Oligotrichea, Litostomatea, Prostomatea, and Phyllopharyngea as anti‐correlated with depth, while Oligohymenophorea (especially Apostomatia) have a direct relationship with depth. Two enigmatic environmental clades include either prevalent variants widely distributed in aphotic layers (the Oligohymenophorea OLIGO5) or subclades differentially distributed in photic versus aphotic waters (the Discotrichidae NASSO1). These results settle contradictory relationships between ciliate alpha‐diversity and depth reported before, suggest functional changes in ciliate assemblages from photic to aphotic waters (with the prevalence of algivory and mixotrophy vs. omnivory and parasitism, respectively), and indicate that contemporary taxon distributions in the vertical profile have been strongly influenced by evolutionary processes. Integration of DNA sequences with organismal data (microscopy, functional experiments) and development of databases that link these sources of information remain as major tasks to better understand ciliate diversity, ecological roles, and evolution in the ocean.

     
    more » « less
  4. Abstract

    Mobile genetic elements (MGEs) are transient genetic material that can move either within a single organism's genome or between individuals or species. While historically considered “junk” DNA (i.e., deleterious or at best neutral), more recent studies reveal the potential adaptive advantages MGEs provide in lineages across the tree of life. Ciliates, a group of single‐celled microbial eukaryotes characterized by nuclear dimorphism, exemplify how epigenetic influences from MGEs shape genome architecture and patterns of molecular evolution. Ciliate nuclear dimorphism may have evolved as a response to transposon invasion and ciliates have since co‐opted transposons to carry out programmed DNA deletion. Another example of the effect of MGEs is in providing mechanisms for lateral gene transfer (LGT) from bacteria, which introduces genetic diversity and, in several cases, may drive ecological specialization in ciliates. As a third example, the integration of viral DNA, likely through transduction, provides new genetic materials and can change the way host cells defend themselves against other viral pathogens. We argue that the acquisition of MGEs through non‐Mendelian patterns of inheritance, coupled with their effects on ciliate genome architecture and persistence throughout evolutionary history, exemplify how the transmission of mobile elements should be considered a mechanism of transgenerational epigenetic inheritance.

     
    more » « less
  5. Abstract

    The angiosperm genus Silene has been the subject of extensive study in the field of ecology and evolution, but the availability of high-quality reference genome sequences has been limited for this group. Here, we report a chromosome-level assembly for the genome of Silene conica based on Pacific Bioscience HiFi, Hi-C, and Bionano technologies. The assembly produced 10 scaffolds (1 per chromosome) with a total length of 862 Mb and only ∼1% gap content. These results confirm previous observations that S. conica and its relatives have a reduced base chromosome number relative to the genus's ancestral state of 12. Silene conica has an exceptionally large mitochondrial genome (>11 Mb), predominantly consisting of sequence of unknown origins. Analysis of shared sequence content suggests that it is unlikely that transfer of nuclear DNA is the primary driver of this mitochondrial genome expansion. More generally, this assembly should provide a valuable resource for future genomic studies in Silene, including comparative analyses with related species that recently evolved sex chromosomes.

     
    more » « less