skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Second-Order Group Influence Functions for Black-Box Predictions
With the rapid adoption of machine learning systems in sensitive applications, there is an increasing need to make black-box models explainable. Often we want to identify an influential group of training samples in a particular test prediction for a given machine learning model. Existing influence functions tackle this problem by using first-order approximations of the effect of removing a sample from the training set on model parameters. To compute the influence of a group of training samples (rather than an individual point) in model predictions, the change in optimal model parameters after removing that group from the training set can be large. Thus, in such cases, the first-order approximation can be loose. In this paper, we address this issue and propose second-order influence functions for identifying influential groups in test-time predictions. For linear models, across different sizes and types of groups, we show that using the proposed second-order influence function improves the correlation between the computed influence values and the ground truth ones. We also show that second-order influence functions could be used with optimization techniques to improve the selection of the most influential group for a test-sample.  more » « less
Award ID(s):
1942230
PAR ID:
10207638
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Machine Learning (ICML)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, there has been a growing interest in developing machine learning (ML) models that can promote fairness, i.e., eliminating biased predictions towards certain populations (e.g., individuals from a specific demographic group). Most existing works learn such models based on well-designed fairness constraints in optimization. Nevertheless, in many practical ML tasks, only very few labeled data samples can be collected, which can lead to inferior fairness performance. This is because existing fairness constraints are designed to restrict the prediction disparity among different sensitive groups, but with few samples, it becomes difficult to accurately measure the disparity, thus rendering ineffective fairness optimization. In this paper, we define the fairness-aware learning task with limited training samples as the fair few-shot learning problem. To deal with this problem, we devise a novel framework that accumulates fairness-aware knowledge across different meta-training tasks and then generalizes the learned knowledge to meta-test tasks. To compensate for insufficient training samples, we propose an essential strategy to select and leverage an auxiliary set for each meta-test task. These auxiliary sets contain several labeled training samples that can enhance the model performance regarding fairness in meta-test tasks, thereby allowing for the transfer of learned useful fairness-oriented knowledge to meta-test tasks. Furthermore, we conduct extensive experiments on three real-world datasets to validate the superiority of our framework against the state-of-the-art baselines. 
    more » « less
  2. Detecting overfitting in generative models is an important challenge in machine learning. In this work, we formalize a form of overfitting that we call data-copying – where the gener- ative model memorizes and outputs training samples or small variations thereof. We pro- vide a three sample test for detecting data- copying that uses the training set, a separate sample from the target distribution, and a generated sample from the model, and study the performance of our test on several canon- ical models and datasets. 
    more » « less
  3. Detecting overfitting in generative models is an important challenge in machine learning. In this work, we formalize a form of overfitting that we call data-copying – where the gener- ative model memorizes and outputs training samples or small variations thereof. We pro- vide a three sample non-parametric test for detecting data-copying that uses the training set, a separate sample from the target dis- tribution, and a generated sample from the model, and study the performance of our test on several canonical models and datasets. 
    more » « less
  4. null (Ed.)
    We study fairness in supervised few-shot meta-learning models that are sensitive to discrimination (or bias) in historical data. A machine learning model trained based on biased data tends to make unfair predictions for users from minority groups. Although this problem has been studied before, existing methods mainly aim to detect and control the dependency effect of the protected variables (e.g. race, gender) on target prediction based on a large amount of training data. These approaches carry two major drawbacks that (1) lacking showing a global cause-effect visualization for all variables; (2) lacking generalization of both accuracy and fairness to unseen tasks. In this work, we first discover discrimination from data using a causal Bayesian knowledge graph which not only demonstrates the dependency of the protected variable on target but also indicates causal effects between all variables. Next, we develop a novel algorithm based on risk difference in order to quantify the discriminatory influence for each protected variable in the graph. Furthermore, to protect prediction from unfairness, a the fast-adapted bias-control approach in meta-learning is proposed, which efficiently mitigates statistical disparity for each task and it thus ensures independence of protected attributes on predictions based on biased and few-shot data samples. Distinct from existing meta-learning models, group unfairness of tasks are efficiently reduced by leveraging the mean difference between (un)protected groups for regression problems. Through extensive experiments on both synthetic and real-world data sets, we demonstrate that our proposed unfairness discovery and prevention approaches efficiently detect discrimination and mitigate biases on model output as well as generalize both accuracy and fairness to unseen tasks with a limited amount of training samples. 
    more » « less
  5. The ubiquitous use of machine learning algorithms brings new challenges to traditional database problems such as incremental view update. Much effort is being put in better understanding and debugging machine learning models, as well as in identifying and repairing errors in training datasets. Our focus is on how to assist these activities when they have to retrain the machine learning model after removing problematic training samples in cleaning or selecting different subsets of training data for interpretability. This paper presents an efficient provenance-based approach, PrIU, and its optimized version, PrIU-opt, for incrementally updating model parameters without sacrificing prediction accuracy. We prove the correctness and convergence of the incrementally updated model parameters, and validate it experimentally. Experimental results show that up to two orders of magnitude speed-ups can be achieved by PrIU-opt compared to simply retraining the model from scratch, yet obtaining highly similar models. 
    more » « less