In bipartite matching problems, vertices on one side of a bipartite graph are paired with those on the other. In its online variant, one side of the graph is available offline, while the vertices on the other side arrive online. When a vertex arrives, an irrevocable and immediate decision should be made by the algorithm; either match it to an available vertex or drop it. Examples of such problems include matching workers to firms, advertisers to keywords, organs to patients, and so on. Much of the literature focuses on maximizing the total relevance—modeled via total weight—of the matching. However, in many real-world problems, it is also important to consider contributions of diversity: hiring a diverse pool of candidates, displaying a relevant but diverse set of ads, and so on. In this paper, we propose the Online Submodular Bipartite Matching (OSBM) problem, where the goal is to maximize a submodular function f over the set of matched edges. This objective is general enough to capture the notion of both diversity (e.g., a weighted coverage function) and relevance (e.g., the traditional linear function)—as well as many other natural objective functions occurring in practice (e.g., limited total budget in advertising settings). We propose novel algorithms that have provable guarantees and are essentially optimal when restricted to various special cases. We also run experiments on real-world and synthetic datasets to validate our algorithms.
more »
« less
Tractable Equilibria in Sponsored Search with Endogenous Budgets
We consider an ad network’s problem of allocating the auction for each individual impression to an optimal subset of advertisers with the goal of revenue maximization. This is a variant of bipartite matching except that advertisers may strategize by choosing their bidding profiles and their total budget. Because the ad network’s allocation rule affects the bidders’ strategies, equilibrium analysis is challenging. We show that this analysis is tractable when advertisers face a linear budget cost r_j. In particular, we show that the strategy in which advertisers bid their valuations shaded by a factor of 1 + r_j is an approximate equilibrium with the error decreasing with market size. This equilibrium can be interpreted as one in which a bidder facing an opportunity cost rj is guaranteed a return on investment of at least rj per dollar spent. Furthermore, in this equilibrium, the optimal allocation for the ad network, as determined from a linear program (LP), is greedy with high probability. This is in contrast with the exogenous budgets case, in which the LP optimization is challenging at practical scales. These results are evidence that, although in general such bipartite matching problems may be challenging to solve because of their high dimensionality, the optimal solution is remarkably simple at equilibrium.
more »
« less
- Award ID(s):
- 2002156
- PAR ID:
- 10208188
- Date Published:
- Journal Name:
- Operations Research
- ISSN:
- 0030-364X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The internet advertising market is a multibillion dollar industry in which advertisers buy thousands of ad placements every day by repeatedly participating in auctions. An important and ubiquitous feature of these auctions is the presence of campaign budgets, which specify the maximum amount the advertisers are willing to pay over a specified time period. In this paper, we present a new model to study the equilibrium bidding strategies in standard auctions, a large class of auctions that includes first and second price auctions, for advertisers who satisfy budget constraints on average. Our model dispenses with the common yet unrealistic assumption that advertisers’ values are independent and instead assumes a contextual model in which advertisers determine their values using a common feature vector. We show the existence of a natural value pacing–based Bayes–Nash equilibrium under very mild assumptions. Furthermore, we prove a revenue equivalence showing that all standard auctions yield the same revenue even in the presence of budget constraints. Leveraging this equivalence, we prove price of anarchy bounds for liquid welfare and structural properties of pacing-based equilibria that hold for all standard auctions. In recent years, the internet advertising market has adopted first price auctions as the preferred paradigm for selling advertising slots. Our work, thus, takes an important step toward understanding the implications of the shift to first price auctions in internet advertising markets by studying how the choice of the selling mechanism impacts revenues, welfare, and advertisers’ bidding strategies. This paper was accepted by Itai Ashlagi, revenue management and market analytics. Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2023.4719 .more » « less
-
Mature internet advertising platforms offer high-level campaign management tools to help advertisers run their campaigns, often abstracting away the intricacies of how each ad is placed and focusing on aggregate metrics of interest to advertisers. On such platforms, advertisers often participate in auctions through a proxy bidder, so the standard incentive analyses that are common in the literature do not apply directly. In this paper, we take the perspective of a budget management system that surfaces aggregated incentives—instead of individual auctions—and compare first and second price auctions. We show that theory offers surprising endorsement for using a first price auction to sell individual impressions. In particular, first price auctions guarantee uniqueness of the steady-state equilibrium of the budget management system, monotonicity, and other desirable properties, as well as efficient computation through the solution to the well-studied Eisenberg–Gale convex program. Contrary to what one can expect from first price auctions, we show that incentives issues are not a barrier that undermines the system. Using realistic instances generated from data collected at real-world auction platforms, we show that bidders have small regret with respect to their optimal ex post strategy, and they do not have a big incentive to misreport when they can influence equilibria directly by giving inputs strategically. Finally, budget-constrained bidders, who have significant prevalence in real-world platforms, tend to have smaller regrets. Our computations indicate that bidder budgets, pacing multipliers, and regrets all have a positive association in statistical terms. This paper was accepted by Gabriel Weintraub, revenue management and market analytics. Funding: D. Panigrahi was supported in part by the National Science Foundation [Awards CCF 1535972, CCF 1750140, and CCF 1955703]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.4310 .more » « less
-
The 2022 settlement between Meta and the U.S. Department of Justice to resolve allegations of discriminatory advertising resulted is a first-of-its-kind change to Meta's ad delivery system aimed to address algorithmic discrimination in its housing ad delivery. In this work, we explore direct and indirect effects of both the settlement's choice of terms and the Variance Reduction System (VRS) implemented by Meta on the actual reduction in discrimination. \newline We first show that the settlement terms allow for an implementation that does not meaningfully improve access to opportunities for individuals. The settlement measures impact of ad delivery in terms of impressions, instead of unique individuals reached by an ad; it allows the platform to level down access, reducing disparities by decreasing the overall access to opportunities; and it allows the platform to selectively apply VRS to only small advertisers. \newline We then conduct experiments to evaluate VRS with real-world ads, and show that while VRS does reduce variance, it also raises advertiser costs (measured per-individuals-reached), therefore decreasing user exposure to opportunity ads for a given ad budget. VRS thus \emph{passes the cost of decreasing variance to advertisers}. \newline Finally, we explore an alternative approach to achieve the settlement goals, that is significantly more intuitive and transparent than VRS. We show our approach outperforms VRS by both increasing ad exposure for users from \emph{all} groups and reducing cost to advertisers, thus demonstrating that the increase in cost to advertisers when implementing the settlement is not inevitable. \newline Our methodologies use a black-box approach that relies on capabilities available to any regular advertiser, rather than on privileged access to data, allowing others to reproduce or extend our work.more » « less
-
null (Ed.)With the popularity of the Internet, traditional offline resource allocation has evolved into a new form, called online resource allocation. It features the online arrivals of agents in the system and the real-time decision-making requirement upon the arrival of each online agent. Both offline and online resource allocation have wide applications in various real-world matching markets ranging from ridesharing to crowdsourcing. There are some emerging applications such as rebalancing in bike sharing and trip-vehicle dispatching in ridesharing, which involve a two-stage resource allocation process. The process consists of an offline phase and another sequential online phase, and both phases compete for the same set of resources. In this paper, we propose a unified model which incorporates both offline and online resource allocation into a single framework. Our model assumes non-uniform and known arrival distributions for online agents in the second online phase, which can be learned from historical data. We propose a parameterized linear programming (LP)-based algorithm, which is shown to be at most a constant factor of 1/4 from the optimal. Experimental results on the real dataset show that our LP-based approaches outperform the LP-agnostic heuristics in terms of robustness and effectiveness.more » « less
An official website of the United States government

