skip to main content


Title: Ultra-broadband On-Resonance Quantum Storage in Hot Atomic Barium Vapor
Quantum memories are of critical importance to the scalability of quantum information processing and quantum technologies in communication, measurement, and computation. Here we present numerical simulation of the storage of ultra-broadband photons in hot atomic barium vapor, which allows for quantum memory operation at telecom wavelengths. We numerically calculate the optimal control field profiles for the storage process both through direct Nedler-Mead simplex search and by singular value decomposition of the storage kernel, where the latter guarantees optimality. We provide a physical interpretation of our numerical results related in part to recent work on Autler-Townes-Splitting (ATS) based quantum memory, and show saturation of the protocol-independent bound on storage efficiency imposed by the optical depth for pulses of duration 200 fs to 17.5 ps. In conclusion we provide an outlook for implementing these results experimentally.  more » « less
Award ID(s):
1640968 1806572 1839177 1936321
NSF-PAR ID:
10208645
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
51st Annual Meeting of the APS Division of Atomic, Molecular and Optical Physics
Volume:
65
Issue:
4
Page Range / eLocation ID:
G02.00001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    State-of-the-art seismic imaging techniques treat inversion tasks such as full-waveform inversion (FWI) and least-squares reverse time migration (LSRTM) as partial differential equation-constrained optimization problems. Due to the large-scale nature, gradient-based optimization algorithms are preferred in practice to update the model iteratively. Higher-order methods converge in fewer iterations but often require higher computational costs, more line-search steps, and bigger memory storage. A balance among these aspects has to be considered. We have conducted an evaluation using Anderson acceleration (AA), a popular strategy to speed up the convergence of fixed-point iterations, to accelerate the steepest-descent algorithm, which we innovatively treat as a fixed-point iteration. Independent of the unknown parameter dimensionality, the computational cost of implementing the method can be reduced to an extremely low dimensional least-squares problem. The cost can be further reduced by a low-rank update. We determine the theoretical connections and the differences between AA and other well-known optimization methods such as L-BFGS and the restarted generalized minimal residual method and compare their computational cost and memory requirements. Numerical examples of FWI and LSRTM applied to the Marmousi benchmark demonstrate the acceleration effects of AA. Compared with the steepest-descent method, AA can achieve faster convergence and can provide competitive results with some quasi-Newton methods, making it an attractive optimization strategy for seismic inversion. 
    more » « less
  2. Abstract

    Quantum repeater networks require independent absorptive quantum memories capable of storing and retrieving indistinguishable photons to perform high-repetition entanglement swapping operations. The ability to perform these coherent operations at room temperature is of prime importance for the realization of scalable quantum networks. We perform Hong-Ou-Mandel (HOM) interference between photonic polarization states and single-photon-level pulses stored and retrieved from two sets of independent room-temperature quantum memories. We show that the storage and retrieval of polarization states from quantum memories does not degrade the HOM visibility for few-photon-level polarization states in a dual-rail configuration. For single-photon-level pulses, we measure the HOM visibility with various levels of background in a single polarization, single-rail QM, and investigate its dependence on the signal-to-background ratio. We obtain an HOM visibility of 43%, compared to the 48% no-memory limit of our set-up. These results allow us to estimate a 33% visibility for polarization qubits under the same conditions. These demonstrations lay the groundwork for future applications using large-scale memory-assisted quantum networks.

     
    more » « less
  3. Recently a new research field of quasi-one-dimensional (1D) van der Waals quantummaterials has emerged from earlier work on low-dimensional systems [1-2]. The quasi-1D van der Waalsmaterials have 1D motifs in their crystal structure [1]. Many of these materials reveal strongly correlatedphenomena such as charge density waves (CDW) [1-2]. The CDW phase is a periodic modulation of theelectronic charge density, accompanied by distortions in the underlying crystal lattice. Potential uses for CDWmaterials include memory storage and oscillators [3]. Raman spectroscopy can identify the CDW transitions todifferent phases via the appearance of phonon peaks due to emerging superstructure or the disappearance ofcertain peaks due to the loss of translation symmetry in the crystal lattice [3]. In this presentation, we report theresults of the angle and temperature-dependent Raman scattering spectroscopy investigation of themechanically exfoliated nanowires of the quasi-1D Nb van der Waals material. It is known that Nb forms in atetragonal crystal structure with space group 124 (P4/mcc). Recently, this material attracted attention as aCDW material with multiple phase transitions, some of them, possibly, near room temperature. Littleinformation is known on the Raman characteristics of this material. Our Raman data for different polarizationangles show strong anisotropy in the response depending on the crystal direction. The most pronouncedRaman peaks reveal strong temperature dependence. The results of the measurements will be compared withthe theoretical predictions. Our data is important for further investigation of this quasi-1D CDW material forpossible applications in phase-change memory and reconfigurable devices. A.A.B. acknowledges the support of the Vannevar Bush Faculty Fellowship (VBFF) from the Office of NavalResearch (ONR) contract N00014-21-1-2947 “One-Dimensional Quantum Materials” and the National ScienceFoundation (NSF) program Designing Materials to Revolutionize and Engineer our Future (DMREF) via aproject DMR-1921958 “Data-Driven Discovery of Synthesis Pathways and Distinguishing ElectronicPhenomena of 1D van der Waals Bonded Solids”. A. D. and S. K. acknowledge support through the MaterialGenome Initiative funding allocated to the National Institute of Standards and Technology. [1] A. A. Balandin, F. Kargar, T. T. Salguero, and R. Lake, “One-dimensional van der Waals quantummaterials", Mater. Today, 55, 74 (2022). [2] A. A. Balandin, R. K. Lake, and T. T. Salguero, "One-dimensional van der Waals materials - Advent of a newresearch field" Appl. Phys. Lett., 121, 040401 (2022). [3] A. A. Balandin, S. V. Zaitzev-Zotov, and G. Grüner, "Charge-density-wave quantum materials and devices—New developments and future prospects", Appl. Phys. Lett., 119, 170401 (2021). [4] R. Samnakay, et al., “Zone-folded phonons and the charge-density-wave transition in 1T-TaSe2 thin films, Nano Lett., 15, 2965 (2015). 
    more » « less
  4. Abstract Body: Recently a new research field of quasi-one-dimensional (1D) van der Waals quantummaterials has emerged from earlier work on low-dimensional systems [1-2]. The quasi-1D van der Waalsmaterials have 1D motifs in their crystal structure [1]. Many of these materials reveal strongly correlatedphenomena such as charge density waves (CDW) [1-2]. The CDW phase is a periodic modulation of theelectronic charge density, accompanied by distortions in the underlying crystal lattice. Potential uses for CDWmaterials include memory storage and oscillators [3]. Raman spectroscopy can identify the CDW transitions todifferent phases via the appearance of phonon peaks due to emerging superstructure or the disappearance ofcertain peaks due to the loss of translation symmetry in the crystal lattice [3]. In this presentation, we report theresults of the angle and temperature-dependent Raman scattering spectroscopy investigation of themechanically exfoliated nanowires of the quasi-1D Nb van der Waals material. It is known that Nb forms in atetragonal crystal structure with space group 124 (P4/mcc). Recently, this material attracted attention as aCDW material with multiple phase transitions, some of them, possibly, near room temperature. Littleinformation is known on the Raman characteristics of this material. Our Raman data for different polarizationangles show strong anisotropy in the response depending on the crystal direction. The most pronouncedRaman peaks reveal strong temperature dependence. The results of the measurements will be compared withthe theoretical predictions. Our data is important for further investigation of this quasi-1D CDW material forpossible applications in phase-change memory and reconfigurable devices. A.A.B. acknowledges the support of the Vannevar Bush Faculty Fellowship (VBFF) from the Office of NavalResearch (ONR) contract N00014-21-1-2947 “One-Dimensional Quantum Materials” and the National ScienceFoundation (NSF) program Designing Materials to Revolutionize and Engineer our Future (DMREF) via aproject DMR-1921958 “Data-Driven Discovery of Synthesis Pathways and Distinguishing ElectronicPhenomena of 1D van der Waals Bonded Solids”. A. D. and S. K. acknowledge support through the MaterialGenome Initiative funding allocated to the National Institute of Standards and Technology. [1] A. A. Balandin, F. Kargar, T. T. Salguero, and R. Lake, “One-dimensional van der Waals quantummaterials", Mater. Today, 55, 74 (2022). [2] A. A. Balandin, R. K. Lake, and T. T. Salguero, "One-dimensional van der Waals materials - Advent of a newresearch field" Appl. Phys. Lett., 121, 040401 (2022). [3] A. A. Balandin, S. V. Zaitzev-Zotov, and G. Grüner, "Charge-density-wave quantum materials and devices—New developments and future prospects", Appl. Phys. Lett., 119, 170401 (2021). [4] R. Samnakay, et al., “Zone-folded phonons and the charge-density-wave transition in 1T-TaSe2 thin films,” Nano Lett., 15, 2965 (2015). 
    more » « less
  5. Automatic differentiation (AutoDiff) in machine learning is largely restricted to expressions used for neural networks (NN), with the depth rarely exceeding a few tens of layers. Compared to NN, numerical simulations typically involve iterative algorithms like time steppers that lead to millions of iterations. Even for modest-sized models, this may yield infeasible memory requirements when applying the adjoint method, also called backpropagation, to time-dependent problems. In this situation, checkpointing algorithms provide a trade-off between recomputation and storage. This paper presents the package Checkpointing.jl that leverages expression transformations in the programming language Julia and the package ChainRules.jl to automatically and transparently transform loop iterations into differentiated loops. The user may choose between various checkpointing algorithm schemes and storage devices. We describe the unique design of Checkpointing.jl and demonstrate its features on an automatically differentiated MPI implementation of Burgers’ equation on the Polaris cluster at the Argonne Leadership Computing Facility. 
    more » « less