skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wind-Driven Seasonal Cycle of the Atlantic Meridional Overturning Circulation
Abstract The dynamical processes governing the seasonal cycle of the Atlantic meridional overturning circulation (AMOC) are studied using a variety of models, ranging from a simple forced Rossby wave model to an eddy-resolving ocean general circulation model. The AMOC variability is decomposed into Ekman and geostrophic transport components, which reveal that the seasonality of the AMOC is determined by both components in the extratropics and dominated by the Ekman transport in the tropics. The physics governing the seasonal fluctuations of the AMOC are explored in detail at three latitudes (26.5°N, 6°N, and 34.5°S). While the Ekman transport is directly related to zonal wind stress seasonality, the comparison between different numerical models shows that the geostrophic transport involves a complex oceanic adjustment to the wind forcing. The oceanic adjustment is further evaluated by separating the zonally integrated geostrophic transport into eastern and western boundary currents and interior flows. The results indicate that the seasonal AMOC cycle in the extratropics is controlled mainly by local boundary effects, where either the western or eastern boundary can be dominant at different latitudes, while in the northern tropics it is the interior flow and its lagged compensation by the western boundary current that determine the seasonal AMOC variability.  more » « less
Award ID(s):
1332978
PAR ID:
10208741
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
44
Issue:
6
ISSN:
0022-3670
Page Range / eLocation ID:
1541 to 1562
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The export of the North Atlantic Deep Water (NADW) from the subpolar North Atlantic is known to affect the variability in the lower limb of the Atlantic meridional overturning circulation (AMOC). However, the respective impact from the transport in the upper NADW (UNADW) and lower NADW (LNADW) layers, and from the various transport branches through the boundary and interior flows, on the subpolar overturning variability remains elusive. To address this, the spatiotemporal characteristics of the circulation of NADW throughout the eastern subpolar basins are examined, mainly based on the 2014–20 observations from the transatlantic Overturning in the Subpolar North Atlantic Program (OSNAP) array. It reveals that the time-mean transport within the overturning’s lower limb across the eastern subpolar gyre [−13.0 ± 0.5 Sv (1 Sv ≡ 106m3s−1)] mostly occurs in the LNADW layer (−9.4 Sv or 72% of the mean), while the lower limb variability is mainly concentrated in the UNADW layer (57% of the total variance). This analysis further demonstrates a dominant role in the lower limb variability by coherent intraseasonal changes across the region that result from a basinwide barotropic response to changing wind fields. By comparison, there is just a weak seasonal cycle in the flows along the western boundary of the basins, in response to the surface buoyancy-induced water mass transformation. 
    more » « less
  2. Abstract The latitudinal structure of the Atlantic meridional overturning circulation (AMOC) variability in the North Atlantic is investigated using numerical results from three ocean circulation simulations over the past four to five decades. We show that AMOC variability south of the Labrador Sea (53°N) to 25°N can be decomposed into a latitudinally coherent component and a gyre-opposing component. The latitudinally coherent component contains both decadal and interannual variabilities. The coherent decadal AMOC variability originates in the subpolar region and is reflected by the zonal density gradient in that basin. It is further shown to be linked to persistent North Atlantic Oscillation (NAO) conditions in all three models. The interannual AMOC variability contained in the latitudinally coherent component is shown to be driven by westerlies in the transition region between the subpolar and the subtropical gyre (40°–50°N), through significant responses in Ekman transport. Finally, the gyre-opposing component principally varies on interannual time scales and responds to local wind variability related to the annual NAO. The contribution of these components to the total AMOC variability is latitude-dependent: 1) in the subpolar region, all models show that the latitudinally coherent component dominates AMOC variability on interannual to decadal time scales, with little contribution from the gyre-opposing component, and 2) in the subtropical region, the gyre-opposing component explains a majority of the interannual AMOC variability in two models, while in the other model, the contributions from the coherent and the gyre-opposing components are comparable. These results provide a quantitative decomposition of AMOC variability across latitudes and shed light on the linkage between different AMOC variability components and atmospheric forcing mechanisms. 
    more » « less
  3. Griffies, Stephen (Ed.)
    Atlantic time‐mean heat transport is northward at all latitudes and exhibits strong multidecadal variability between about 30°N and 55°N. Atlantic heat transport variability influences many aspects of the climate system, including regional surface temperatures, subpolar heat content, Arctic sea‐ice concentration and tropical precipitation patterns. Atlantic heat transport and heat transport variability are commonly partitioned into two components: the heat transport by the Atlantic Meridional Overturning Circulation (AMOC) and the heat transport by the gyres. In this paper we compare four different methods for performing this partition, and we apply these methods to the Community Earth System Model Large Ensemble at 34°N, 26°N and 5°S. We discuss the strengths and weaknesses of each method. The four methods all give significantly different estimates for the proportion of the time‐mean heat transport performed by AMOC. One of these methods is a new physically‐motivated method based on the pathway of the northward‐flowing part of AMOC. This paper presents a preliminary version of our method that works only when the AMOC follows the western boundary of the basin. All the methods agree that at 26°N, 80%–100% of heat transport variability at 2–10 years timescales is performed by AMOC, but there is more disagreement between methods in attributing multidecadal variability, with some methods showing a compensation between the AMOC and gyre heat transport variability. 
    more » « less
  4. Abstract Monthly observations are used to study the relationship between the Atlantic meridional overturning circulation (AMOC) at 26° N and sea level (ζ) on the New England coast (northeastern United States) over nonseasonal timescales during 2004–2017. Variability inζis anticorrelated with AMOC on intraseasonal and interannual timescales. This anticorrelation reflects the stronger underlying antiphase relationship between ageostrophic Ekman‐related AMOC transports due to local zonal winds across 26° N andζchanges arising from local wind and pressure forcing along the coast. These distinct local atmospheric variations across 26° N and along coastal New England are temporally correlated with one another on account of large‐scale atmospheric teleconnection patterns. Geostrophic AMOC contributions from the Gulf Stream through the Florida Straits and upper‐mid‐ocean transport across the basin are together uncorrelated withζ. This interpretation contrasts with past studies that understoodζand AMOC as being in geostrophic balance with one another. 
    more » « less
  5. null (Ed.)
    The Mediterranean Sea can be viewed as a “barometer” of the North Atlantic Ocean, because its sea level responds to oceanic-gyre-scale changes in atmospheric pressure and wind forcing, related to the North Atlantic Oscillation (NAO). The climate of the North Atlantic is influenced by the Atlantic meridional overturning circulation (AMOC) as it transports heat from the South Atlantic toward the subpolar North Atlantic. This study reports on a teleconnection between the AMOC transport measured at 26.5°N and the Mediterranean Sea level during 2004–17: a reduced/increased AMOC transport is associated with a higher/lower sea level in the Mediterranean. Processes responsible for this teleconnection are analyzed in detail using available satellite and in situ observations and an atmospheric reanalysis. First, it is shown that on monthly to interannual time scales the AMOC and sea level are both driven by similar NAO-like atmospheric circulation patterns. During a positive/negative NAO state, stronger/weaker trade winds (i) drive northward/southward anomalies of Ekman transport across 26.5°N that directly affect the AMOC and (ii) are associated with westward/eastward winds over the Strait of Gibraltar that force water to flow out of/into the Mediterranean Sea and thus change its average sea level. Second, it is demonstrated that interannual changes in the AMOC transport can lead to thermosteric sea level anomalies near the North Atlantic eastern boundary. These anomalies can (i) reach the Strait of Gibraltar and cause sea level changes in the Mediterranean Sea and (ii) represent a mechanism for negative feedback on the AMOC. 
    more » « less